First in-Lab Testing of a Cost-Effective Prototype for PM2.5 Monitoring: The P.ALP Assessment
Abstract
:1. Introduction
1.1. Background
1.2. Problem Statement
1.3. Aim of the Study
2. Materials and Methods
2.1. Instruments and Setup
2.2. Data Collection
2.3. LOD and LOQ
2.4. Data Treatment and Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Precision
3.3. Accuracy
3.4. Application Field following US EPA’s Guidelines
3.5. Error Trends
Error Trends of the P.ALP’s Post-Corrected Data
Devices Compared | PM2.5 Average Error [µg/m3] | PM2.5 Confidence Interval [µg/m3] | ||
---|---|---|---|---|
Mean | SD | Upper 95% | Lower 95% | |
APS vs. P.ALP_0 | 1.02 | 5.61 | 12.01 | −9.98 |
APS vs. P.ALP_1 | −2.21 | 9.43 | 16.40 | −20.81 |
APS vs. P.ALP_2 | 3.68 | 16.77 | 36.54 | −29.18 |
APS vs. P.ALP_3 | 1.91 | 8.44 | 18.46 | −14.63 |
4. Discussion
4.1. Descriptive Statistics
4.2. Precision
4.3. Accuracy
4.4. US EPA’s Guidelines
4.5. Error Trends
4.6. Error Trends—P.ALPs’ Post-Corrected Data
4.7. Strengths and Limitations of the Study
4.8. Future Developments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- European Environment Agency; González Ortiz, A.; Cristina Guerrero, J.S. Air Quality in Europe—2020 Report; Office of the European Union: Luxembourg, 2020; ISBN 978-92-9480-292-7. [Google Scholar]
- Clements, A.; Duvall, R.; Greene, D.; Dye, T. The Enhanced Air Sensor Guidebook; US Environmental Protection Agency: Washington, DC, USA, 2022.
- Cohen, A.J.; Anderson, H.R.; Ostro, B.; Pandey, K.D.; Krzyzanowski, M.; Künzli, N.; Gutschmidt, K.; Pope, A.; Romieu, I.; Samet, J.M.; et al. The Global Burden of Disease Due to Outdoor Air Pollution. J. Toxicol. Environ. Health 2005, 68, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Islam, F. The Effects of Air Pollution on COVID-19 Infection and Mortality—A Review on Recent Evidence. Front. Public Health 2020, 8, 580057. [Google Scholar] [CrossRef] [PubMed]
- Sarkodie, S.A.; Owusu, P.A. Global Effect of City-to-City Air Pollution, Health Conditions, Climatic & Socio-Economic Factors on COVID-19 Pandemic. Sci. Total Environ. 2021, 778, 146394. [Google Scholar] [CrossRef] [PubMed]
- Van Poppel, M.; Schneider, P.; Peters, J.; Yatkin, S.; Gerboles, M.; Matheeussen, C.; Bartonova, A.; Davila, S.; Signorini, M.; Vogt, M.; et al. SensEURCity: A Multi-City Air Quality Dataset Collected for 2020/2021 Using Open Low-Cost Sensor Systems. Sci. Data 2023, 10, 322. [Google Scholar] [CrossRef] [PubMed]
- Wan, E.; Zhang, Q.; Li, L.; Xie, Q.; Li, X.; Liu, Y. The Online in Situ Detection of Indoor Air Pollution via Laser Induced Breakdown Spectroscopy and Single Particle Aerosol Mass Spectrometer Technology. Opt. Lasers Eng. 2024, 174, 107974. [Google Scholar] [CrossRef]
- Panahifar, H.; Moradhaseli, R.; Khalesifard, H.R. Monitoring Atmospheric Particulate Matters Using Vertically Resolved Measurements of a Polarization Lidar, in-Situ Recordings and Satellite Data over Tehran, Iran. Sci. Rep. 2020, 10, 20052. [Google Scholar] [CrossRef]
- Zikova, N.; Masiol, M.; Chalupa, D.C.; Rich, D.Q.; Ferro, A.R.; Hopke, P.K. Estimating Hourly Concentrations of PM2.5 across a Metropolitan Area Using Low-Cost Particle Monitors. Sensors 2017, 17, 1922. [Google Scholar] [CrossRef]
- Schneider, P.; Castell, N.; Vogt, M.; Dauge, F.R.; Lahoz, W.A.; Bartonova, A. Mapping Urban Air Quality in near Real-Time Using Observations from Low-Cost Sensors and Model Information. Environ. Int. 2017, 106, 234–247. [Google Scholar] [CrossRef]
- Lu, T.; Bechle, M.J.; Wan, Y.; Presto, A.A.; Hankey, S. Using Crowd-Sourced Low-Cost Sensors in a Land Use Regression of PM2.5 in 6 US Cities. Air Qual. Atmos. Health 2022, 15, 667–678. [Google Scholar] [CrossRef]
- Mendez, E.; Temby, O.; Wladyka, D.; Sepielak, K.; Raysoni, A.U. Using Low-Cost Sensors to Assess PM2.5 Concentrations at Four South Texan Cities on the U.S.—Mexico Border. Atmosphere 2022, 13, 1554. [Google Scholar] [CrossRef]
- Gao, M.; Cao, J.; Seto, E. A Distributed Network of Low-Cost Continuous Reading Sensors to Measure Spatiotemporal Variations of PM2.5 in Xi’an, China. Environ. Pollut. 2015, 199, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of Low-Cost Sensing Technologies for Air Quality Monitoring and Exposure Assessment: How Far Have They Gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The Rise of Low-Cost Sensing for Managing Air Pollution in Cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Fanti, G.; Borghi, F.; Spinazzè, A.; Rovelli, S.; Campagnolo, D.; Keller, M.; Cattaneo, A.; Cauda, E.; Cavallo, D.M. Features and Practicability of the Next-Generation Sensors and Monitors for Exposure Assessment to Airborne Pollutants: A Systematic Review. Sensors 2021, 21, 4513. [Google Scholar] [CrossRef]
- Kuula, J.; Mäkelä, T.; Aurela, M.; Teinilä, K.; Varjonen, S.; González, Ó.; Timonen, H. Laboratory Evaluation of Particle-Size Selectivity of Optical Low-Cost Particulate Matter Sensors. Atmos. Meas. Technol. 2020, 13, 2413–2423. [Google Scholar] [CrossRef]
- Volkwein, J.C.; Vinson, R.P.; Page, S.J.; McWilliams, L.J.; Joy, G.J.; Mischler, S.E.; Tuchman, D.P. Laboratory and Field Performance of a Continuously Measuring Personal Respirable Dust Monitor. In Report of Investigations 9669; DHHS Publication: Washington, DC, USA, 2006. [Google Scholar]
- Kang, Y.; Aye, L.; Ngo, T.D.; Zhou, J. Performance Evaluation of Low-Cost Air Quality Sensors: A Review. Sci. Total Environ. 2022, 818, 151769. [Google Scholar] [CrossRef]
- Kogut, J.; Tomb, T.F.; Parobeck, P.S.; Gero, A.J.; Supper, K.L. Measurement Precision with the Coal Mine Dust Personal Sampler. Appl. Occup. Environ. Hyg. 1997, 12, 999–1006. [Google Scholar] [CrossRef]
- Sayahi, T.; Butterfield, A.; Kelly, K.E. Long-Term Field Evaluation of the Plantower PMS Low-Cost Particulate Matter Sensors. Environ. Pollut. 2019, 245, 932–940. [Google Scholar] [CrossRef]
- Williams, R.; Kaufman, A.; Hanley, T.; Rice, J.; Garvey, S. Evaluation of Field-Deployed Low Cost PM Sensors; EPA/600/R-14/464; U.S. Environmental Protection Agency: Washington, DC, USA, 2014; pp. 1–76.
- Fanti, G.; Borghi, F.; Cauda, E.; Wolfe, C.; Patts, J. Conceptualization and Construction of a Low-Cost and Self-Made Device for Monitoring of Particulate Matter: A Step-by-Step Guide. Ital. J. Occup. Environ. Hyg. 2023, 14, e2023006. [Google Scholar]
- Fanti, G.; Borghi, F.; Campagnolo, D.; Rovelli, S.; Carminati, A.; Zellino, C.; Cattaneo, A.; Cauda, E.; Spinazzè, A.; Cavallo, D.M. An In-Field Assessment of the P.ALP Device in Four Different Real Working Conditions: A Performance Evaluation in Particulate Matter Monitoring. Toxics 2024, 12, 233. [Google Scholar] [CrossRef] [PubMed]
- Marple, V.A.; Rubow, K.L. An Aerosol Chamber for Instrument Evaluation and Calibration. Am. Ind. Hyg. Assoc. J. 1983, 44, 361–367. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Moosmüller, H.; Green, M.; Frank, N.; Pitvhford, M. Guidance for Using Continuous Monitors in PM 2.5 Monitoring Networks; PB-99-121600/XAB; Environmental Protection Agency: Washington, DC, USA, 29 May 1998.
- Borghi, F.; Spinazzè, A.; Campagnolo, D.; Rovelli, S.; Cattaneo, A.; Cavallo, D.M. Precision and Accuracy of a Direct-Reading Miniaturized Monitor in PM2.5 Exposure Assessment. Sensors 2018, 18, 3089. [Google Scholar] [CrossRef] [PubMed]
- Eksperiandova, L.P.; Belikov, K.N.; Khimchenko, S.V.; Blank, T.A. Once Again about Determination and Detection Limits. J. Anal. Chem. 2010, 65, 223–228. [Google Scholar] [CrossRef]
- Wenzl, T.; Haedrich, J.; Schaechtele, A.; Robouch, P.; Stroka, J. Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Feed and Food. EUR 28099 EN. In European Union Reference Laboratory; Publications Office of the European Union: Luxembourg, 2016; Volume 52, ISBN 978-92-79-61768-3. [Google Scholar] [CrossRef]
- Martin Bland, J.; Douglas, G.A. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Lancet 1986, 8, 307–310. [Google Scholar] [CrossRef]
- Han, J.; Liu, X.; Chen, D.; Jiang, M. Influence of Relative Humidity on Real-Time Measurements of Particulate Matter Concentration via Light Scattering. J. Aerosol Sci. 2020, 139, 105462. [Google Scholar] [CrossRef]
- Ouimette, J.R.; Malm, W.C.; Schichtel, B.A.; Sheridan, P.J.; Andrews, E.; Ogren, J.A.; Arnott, W.P. Evaluating the PurpleAir Monitor as an Aerosol Light Scattering Instrument. Atmos. Meas. Technol. 2022, 15, 655–676. [Google Scholar] [CrossRef]
- Balanescu, M.; Suciu, G.; Dobrea, M.A.; Balaceanu, C.; Ciobanu, R.I.; Dobre, C.; Birdici, A.C.; Badicu, A.; Oprea, I.; Pasat, A. An algorithm to improve data accuracy of PMs concentration measured with IoT devices. Adv. Sci. Technol. Eng. Syst. 2020, 5, 180–187. [Google Scholar] [CrossRef]
- Balanescu, M.; Oprea, I.; Suciu, G.; Dobrea, M.A.; Balaceanu, C.; Ciobanu, R.I.; Dobre, C. A study on data accuracy for IoT measurements of PMs concentration. In Proceedings of the 2019 22nd International Conference on Control Systems and Computer Science (CSCS), Bucharest, Romania, 28–30 May 2019; pp. 182–187. [Google Scholar] [CrossRef]
- Jayaratne, R.; Liu, X.; Thai, P.; Dunbabin, M.; Morawska, L. The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog. Atmos. Meas. Tech. 2018, 11, 4883–4890. [Google Scholar] [CrossRef]
- Zieger, P.; Fierz-Schmidhauser, R.; Weingartner, E.; Baltensperger, U. Effects of relative humidity on aerosol light scattering: Results from different European sites. Atmos. Chem. Phys. 2013, 13, 10609–10631. [Google Scholar] [CrossRef]
- Tryner, J.; Quinn, C.; Windom, B.C.; Volckens, J. Design and evaluation of a portable PM2.5 monitor featuring a low-cost sensor in line with an active filter sampler. Environ. Sci. Process. Impacts 2019, 21, 1403–1415. [Google Scholar] [CrossRef]
- Mahajan, S.; Kumar, P. Evaluation of low-cost sensors for quantitative personal exposure monitoring. Sustain. Cities Soc. 2020, 57, 102076. [Google Scholar] [CrossRef]
Testing Day (Date) | Dust | Test n. | Planned RH | Planned Test |
---|---|---|---|---|
1 (23 September 2022) | 1 | 1 | 20% | Sensitivity test |
2 | 25% | Low concentrations | ||
2 (26 September 2022) | 1 | 3 | 50% | Low concentrations |
4 | 75% | Low concentrations | ||
3 (30 September 2022) | 1 | 5 | 50% | Steady-state increasing concentrations |
4 (4 October 2022) | 1 | 6 | 50% | Very-high concentrations |
7 | 50% | Very-low concentrations | ||
8 | Random | Random spikes | ||
5 (5 October 2022) | 1 | 9 | Random | Random spikes |
6 (11 October 2022) | 2 | 10 | 25% | Sensitivity test |
11 | 25% | Low concentrations | ||
7 (13 October 2022) | 2 | 12 | 50% | Low concentrations |
13 | 75% | Low concentrations | ||
8 (14 October 2022) | 2 | 14 | 50% | Low steady-state concentrations |
15 | 50% | Mid-range steady-state concentrations | ||
16 | 50% | High steady-state concentrations | ||
9 (17 October 2022) | 2 | 17 | 50% | Very-low concentrations |
18 | 50% | Mid-range concentrations | ||
10 (18 October 2022) | 2 | 19 | Random | Random spikes |
20 | Random | Random spikes |
Testing Day | Dust | Test | Duration [min] | PM2.5 Conc. [µg/m3] | RH [%] | T [°C] | |||
---|---|---|---|---|---|---|---|---|---|
Min. | Mean | Max. | Min. | Max. | Mean | ||||
1 | 1 | 1 | 105 | 0.04 | 1.48 | 8.94 | 24.7 | 27.8 | 29.2 |
2 | 167 | 0.12 | 2.80 | 9.36 | 22.5 | 45.7 | 30.0 | ||
2 | 1 | 3 | 213 | 0.06 | 3.07 | 9.24 | 29.1 | 57.4 | 30.9 |
4 | 177 | 0.18 | 12.73 | 42.67 | 22.5 | 47.5 | 30 | ||
3 | 1 | 5 | 341 | 9.39 | 29.11 | 231.20 | 28.2 | 57.4 | 31.3 |
4 | 1 | 6 | 78 | 58.41 | 102.19 | 212.93 | 42.6 | 47 | 27.7 |
7 | 130 | 46.13 | 62.72 | 95.63 | 43.8 | 45.3 | 30.1 | ||
8 | 129 | 58.38 | 93.15 | 113.83 | 34.5 | 45.7 | 30.6 | ||
5 | 1 | 9 | 129 | 46.21 | 82.12 | 109.78 | 40.1 | 46 | 29.9 |
6 | 2 | 10 | 142 | 0.19 | 0.27 | 0.43 | 28.1 | 39.5 | 26.8 |
11 | 179 | 0.12 | 3.89 | 9.35 | 25.1 | 58 | 29.8 | ||
7 | 2 | 12 | 216 | 0.10 | 9.50 | 45.73 | 25.1 | 57.4 | 30.4 |
13 | 179 | 9.54 | 25.33 | 45.97 | 25.4 | 57.6 | 31 | ||
8 | 2 | 14 | 101 | 22.78 | 29.89 | 34.58 | 41.8 | 42.9 | 28.7 |
15 | 111 | 9.42 | 23.82 | 43.73 | 26.0 | 43.1 | 28.9 | ||
16 | 89 | 9.47 | 22.40 | 45.84 | 36.6 | 44.2 | 31.6 | ||
9 | 2 | 17 | 98 | 9.83 | 85.75 | 208.62 | 24.9 | 45.7 | 29.9 |
18 | 146 | 48.41 | 131.50 | 179.36 | 32.6 | 57.9 | 29.2 | ||
10 | 2 | 19 | 137 | 174.54 | 240.07 | 297.34 | 41.1 | 41.7 | 31.8 |
20 | 122 | 46.08 | 144.85 | 298.64 | 35.2 | 40.7 | 30 |
Device | Valid N | <LOD | PM2.5 Conc. [µg/m3] | ||||
---|---|---|---|---|---|---|---|
Min. | Mean | Median | Max. | S.D. | |||
APS | 2802 | 0 | 0.04 | 50.69 | 25.12 | 297.34 | 66.88 |
P.ALP_0 | 2989 | 365 | 0.00 | 96.18 | 42.40 | 705.50 | 148.68 |
P.ALP_1 | 2942 | 771 | 0.00 | 77.35 | 30.65 | 588.40 | 127.56 |
P.ALP_2 | 2031 | 379 | 0.00 | 101.44 | 38.50 | 618.30 | 151.65 |
P.ALP_3 | 2027 | 376 | 0.00 | 53.16 | 40.00 | 352.20 | 51.78 |
Devices Compared | Regression Model | Watson et al.’s Criteria [27] | |||||
---|---|---|---|---|---|---|---|
R | R2 | Q | m | SE | C | MP | |
P.ALP_0 vs. P.ALP_1 | 0.998 | 0.995 | −3.685 | 0.85 | 0.195 | Yes | No |
P.ALP_0 vs. P.ALP_2 | 0.998 | 0.995 | −6.014 | 0.883 | 0.288 | Yes | No |
P.ALP_0 vs. P.ALP_3 | 0.992 | 0.983 | −1.874 | 0.829 | 0.217 | Yes | No |
P.ALP_1 vs. P.ALP_2 | 0.999 | 0.998 | −2.265 | 1.037 | 0.182 | Yes | No |
P.ALP_1 vs. P.ALP_3 | 0.992 | 0.984 | −0.198 | 1.03 | 0.21 | Yes | Yes |
P.ALP_2 vs. P.ALP_3 | 0.989 | 0.979 | 0.954 | 1.008 | 0.243 | Yes | No |
Devices Compared | Regression Model | Watson et al. Criteria [27] | |||||
---|---|---|---|---|---|---|---|
R | R2 | Q | m | SE | C | MP | |
P.ALP_0 vs. APS | 0.979 | 0.959 | −12.061 | 2.227 | 0.73 | Yes | No |
P.ALP_1 vs. APS | 0.972 | 0.945 | −13.03 | 1.892 | 0.728 | Yes | No |
P.ALP_2 vs. APS | 0.973 | 0.946 | −13.78 | 1.989 | 1.065 | Yes | No |
P.ALP_3 vs. APS | 0.928 | 0.861 | 4.807 | 1.28 | 0.652 | Yes | No |
Devices | PM2.5 [µg/m3] | EPA Criteria | |||||
---|---|---|---|---|---|---|---|
N | Mean | SD | Cv | CVdiff. | MNB | Application Tier | |
P.ALP_0 | 2989 | 96.18 | 148.68 | 1.5 | 0.23 | 0.90 | Failed |
P.ALP_1 | 2989 | 77.35 | 127.56 | 1.6 | 0.33 | 0.53 | Failed |
P.ALP_2 | 2989 | 101.44 | 151.65 | 1.5 | 0.18 | 1.00 | Failed |
P.ALP_3 | 2989 | 53.16 | 51.78 | 1.0 | −0.35 | 0.05 | Tier I |
APS | 2989 | 50.69 | 66.88 | 1.3 | - | - | - |
Devices Compared | PM2.5 Average Error [µg/m3] | PM2.5 Confidence Interval [µg/m3] | ||
---|---|---|---|---|
Mean | SD | Upper 95% | Lower 95% | |
APS vs. P.ALP_0 | −50.11 | 87.61 | 121.61 | −221.84 |
APS vs. P.ALP_1 | −31.40 | 67.25 | 100.41 | −163.21 |
APS vs. P.ALP_2 | −46.55 | 83.27 | 116.65 | −209.76 |
APS vs. P.ALP_3 | −15.95 | 22.08 | 27.33 | −59.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanti, G.; Borghi, F.; Wolfe, C.; Campagnolo, D.; Patts, J.; Cattaneo, A.; Spinazzè, A.; Cauda, E.; Cavallo, D.M. First in-Lab Testing of a Cost-Effective Prototype for PM2.5 Monitoring: The P.ALP Assessment. Sensors 2024, 24, 5915. https://doi.org/10.3390/s24185915
Fanti G, Borghi F, Wolfe C, Campagnolo D, Patts J, Cattaneo A, Spinazzè A, Cauda E, Cavallo DM. First in-Lab Testing of a Cost-Effective Prototype for PM2.5 Monitoring: The P.ALP Assessment. Sensors. 2024; 24(18):5915. https://doi.org/10.3390/s24185915
Chicago/Turabian StyleFanti, Giacomo, Francesca Borghi, Cody Wolfe, Davide Campagnolo, Justin Patts, Andrea Cattaneo, Andrea Spinazzè, Emanuele Cauda, and Domenico Maria Cavallo. 2024. "First in-Lab Testing of a Cost-Effective Prototype for PM2.5 Monitoring: The P.ALP Assessment" Sensors 24, no. 18: 5915. https://doi.org/10.3390/s24185915
APA StyleFanti, G., Borghi, F., Wolfe, C., Campagnolo, D., Patts, J., Cattaneo, A., Spinazzè, A., Cauda, E., & Cavallo, D. M. (2024). First in-Lab Testing of a Cost-Effective Prototype for PM2.5 Monitoring: The P.ALP Assessment. Sensors, 24(18), 5915. https://doi.org/10.3390/s24185915