A ‘Frugal’ EGFET Sensor for Waterborne H2S
Abstract
:1. Introduction
2. Materials and Methods
2.1. EGFET Setup
2.2. EGFET Electric Characterisation
2.3. Sensitising EGFET for H2S
2.4. EGFET H2S Sensor Testing and Calibration
3. Results and Discussion
3.1. Qualitative Study of Gold Electrode EGFETs for H2Saq Detection
Figure 2 | CG Electrode | FG Electrode | ΔVCG [mV] |
---|---|---|---|
a | Zn | Zn | 0 |
b | Zn | Au | +288 |
c | Au | Zn | −283 |
d | Au | Au | 0 |
Compound | c [mg/L] | Compound | c [mg/L] |
---|---|---|---|
N (total) | 8830 | Na+ | 3450 |
Ammonia | 460 | Ca2+ | 230 |
Nitrate/Nitrite | 0.06 | Mg2+ | 120 |
P (total) | 800…2000 | Cl− | 4970 |
K+ | 2740 | SO42− | 1500 |
3.2. Quantitative Calibration of Au Electrode EGFET for H2Saq Sensing
Parameter | k [106 L/mol] | β | ΔVsat [mV] |
---|---|---|---|
Value | 2.677 ± 0.54 | 0.66 ± 0.12 | 250 ± 8 |
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerasimon, G.; Bennett, S.; Musser, J.; Rinard, J. Acute Hydrogen Sulfide Poisoning in a Dairy Farmer. Clin. Toxicol. 2007, 45, 420–423. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, R.G.; Chang, A.; Hamilton, R.J. Co-Worker Fatalities from Hydrogen Sulfide. Am. J. Ind. Med. 2004, 45, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Jong Ko, H.; Tae Kim, H.; Shin Kim, Y.; Man Roh, Y.; Min Lee, C.; Nyon Kim, C. Quantification of Ammonia and Hydrogen Sulfide Emitted from Pig Buildings in Korea. J. Environ. Manag. 2008, 88, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Lien, C.-C.; Lin, J.-L.; Ting, C.-H. Water Scrubbing for Removal of Hydrogen Sulfide (H2S) In Biogas from Hog Farms. JACEN 2014, 3, 1–6. [Google Scholar] [CrossRef]
- Zagli, G.; Patacchini, R.; Trevisani, M.; Abbate, R.; Cinotti, S.; Gensini, G.F.; Masotti, G.; Geppetti, P. Hydrogen Sulfide Inhibits Human Platelet Aggregation. Eur. J. Pharmacol. 2007, 559, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Guidotti, T.L. Hydrogen Sulfide: Advances in Understanding Human Toxicity. Int. J. Toxicol. 2010, 29, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Sawada, J.A.; Junaid, A.S.M.; Rezaei, S.; Wu, L.; Kuznicki, S.M.; Tavana, A. Novel Copper-Exchanged Titanosilicate Adsorbent for Low Temperature H2S Removal. Ind. Eng. Chem. Res. 2012, 51, 12430–12434. [Google Scholar] [CrossRef]
- Kulprathipanja, A.; Alptekin, G.; Falconer, J.; Way, J. Pd and Pd–Cu Membranes: Inhibition of H Permeation by HS. J. Membr. Sci. 2005, 254, 49–62. [Google Scholar] [CrossRef]
- Peng, S.-Y.; Wu, X.; Lu, T.; Cui, G.; Chen, G. Research Progress of Hydrogen Sulfide in Alzheimer’s Disease from Laboratory to Hospital: A Narrative Review. Med. Gas. Res. 2020, 10, 125–129. [Google Scholar] [CrossRef]
- Guidelines for Drinking-Water Quality, 4th Edition, Incorporating the 1st Addendum. Available online: https://www.who.int/publications-detail-redirect/9789241549950 (accessed on 3 December 2023).
- de Hoog, N. ‘Unacceptable’: How Raw Sewage Has Affected Rivers in England and Wales—In Maps. Available online: https://www.theguardian.com/environment/ng-interactive/2023/sep/12/unacceptable-how-raw-sewage-has-affected-rivers-in-england-and-wales-in-maps (accessed on 3 December 2023).
- Stetter, J.R.; Sedlak, J.M.; Blurton, K.F. Electrochemical Gas Chromatographic Detection of Hydrogen Sulfide at PPM and PPB Levels. J. Chromatogr. Sci. 1977, 15, 125–128. [Google Scholar] [CrossRef]
- Bagreev, A.; Bandosz, T.J. Study of Hydrogen Sulfide Adsorption on Activated Carbons Using Inverse Gas Chromatography at Infinite Dilution. J. Phys. Chem. B 2000, 104, 8841–8847. [Google Scholar] [CrossRef]
- Radford-Knoery, J.; Cutter, G.A. Determination of Carbonyl Sulfide and Hydrogen Sulfide Species in Natural Waters Using Specialized Collection Procedures and Gas Chromatography with Flame Photometric Detection. Anal. Chem. 1993, 65, 976–982. [Google Scholar] [CrossRef]
- Gong, J.; Chen, Q.; Lian, M.-R.; Liu, N.-C.; Stevenson, R.G.; Adami, F. Micromachined Nanocrystalline Silver Doped SnO2 H2S Sensor. Sens. Actuators B Chem. 2006, 114, 32–39. [Google Scholar] [CrossRef]
- Spilker, B.; Randhahn, J.; Grabow, H.; Beikirch, H.; Jeroschewski, P. New Electrochemical Sensor for the Detection of Hydrogen Sulfide and Other Redox Active Species. J. Electroanal. Chem. 2008, 612, 121–130. [Google Scholar] [CrossRef]
- Hou, F.; Huang, L.; Xi, P.; Cheng, J.; Zhao, X.; Xie, G.; Shi, Y.; Cheng, F.; Yao, X.; Bai, D.; et al. A Retrievable and Highly Selective Fluorescent Probe for Monitoring Sulfide and Imaging in Living Cells. Inorg. Chem. 2012, 51, 2454–2460. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, R.; Kumar, P.; Ghosh, A.; Gupta, N.; Kaur, D.; Arora, S.; Jose, D.A. Alizarin Red S–Zinc(II) Fluorescent Ensemble for Selective Detection of Hydrogen Sulphide and Assay with an H2S Donor. RSC Adv. 2015, 5, 79309–79316. [Google Scholar] [CrossRef]
- Kaushik, R.; Singh, A.; Ghosh, A.; Jose, D.A. Selective Colorimetric Sensor for the Detection of Hg2+ and H2S in Aqueous Medium and Waste Water Samples. ChemistrySelect 2016, 1, 1533–1540. [Google Scholar] [CrossRef]
- Colon, M.; Todolí, J.L.; Hidalgo, M.; Iglesias, M. Development of Novel and Sensitive Methods for the Determination of Sulfide in Aqueous Samples by Hydrogen Sulfide Generation-Inductively Coupled Plasma-Atomic Emission Spectroscopy. Anal. Chim. Acta 2008, 609, 160–168. [Google Scholar] [CrossRef]
- Li, D.-W.; Qu, L.-L.; Hu, K.; Long, Y.-T.; Tian, H. Monitoring of Endogenous Hydrogen Sulfide in Living Cells Using Surface-Enhanced Raman Scattering. Angew. Chem. Int. Ed. 2015, 54, 12758–12761. [Google Scholar] [CrossRef]
- Lewin, K.; Walsh, J.N.; Miles, D.L. Determination of Dissolved Sulphide in Groundwaters by Inductively Coupled Plasma Atomic Emission Spectrometry. J. Anal. At. Spectrom. 1987, 2, 249. [Google Scholar] [CrossRef]
- Anisimov, D.S.; Chekusova, V.P.; Trul, A.A.; Abramov, A.A.; Borshchev, O.V.; Agina, E.V.; Ponomarenko, S.A. Fully Integrated Ultra-Sensitive Electronic Nose Based on Organic Field-Effect Transistors. Sci. Rep. 2021, 11, 10683. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Y.; Xie, G.; Tai, H.; Sun, P.; Zhang, B. Copper Phthalocyanine Thin Film Transistors for Hydrogen Sulfide Detection. Sens. Actuators B Chem. 2013, 176, 1191–1196. [Google Scholar] [CrossRef]
- ECH-H2S, Sulphide. Available online: https://ech.de/index.php/en/h2s-sulfide-overview (accessed on 2 October 2023).
- Lin, V.S.; Chang, C.J. Fluorescent Probes for Sensing and Imaging Biological Hydrogen Sulfide. Curr. Opin. Chem. Biol. 2012, 16, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Noh, H.L.; Oh, B.M.; Park, Y.K.; Chun, H.W.; Lee, J.; Kim, J.K.; Zheng, J.; Jung, D.; Lee, W.; Kim, J.H. Chromogenic Detection of Hydrogen Sulfide Using Squarylium-Based Chemosensors. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 239, 118457. [Google Scholar] [CrossRef]
- van der Spiegel, J.; Lauks, I.; Chan, P.; Babic, D. The Extended Gate Chemically Sensitive Field Effect Transistor as Multi-Species Microprobe. Sens. Actuators 1983, 4, 291–298. [Google Scholar] [CrossRef]
- Bergveld, P. Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. IEEE Trans. Biomed. Eng. 1970, BME-17, 70–71. [Google Scholar] [CrossRef] [PubMed]
- LND150 MOSFET Datasheet Pdf—Depletion-Mode MOSFET. Equivalent, Catalog. Available online: https://datasheetspdf.com/pdf/60292/SupertexInc/LND150/1 (accessed on 6 October 2023).
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1170. [Google Scholar] [CrossRef] [PubMed]
- Duval, F.; Van Beek, T.A.; Zuilhof, H. Key Steps towards the Oriented Immobilization of Antibodies Using Boronic Acids. Analyst 2015, 140, 6467–6472. [Google Scholar] [CrossRef]
- AlQahtani, H.; Alswieleh, A.; Al-Khurayyif, I.; AlGarni, S.; Grell, M. Parallel Potentiometric and Capacitive Response in a Water-Gate Thin Film Transistor Biosensor at High Ionic Strength. Sensors 2021, 21, 5618. [Google Scholar] [CrossRef]
- Al-Hardan, N.; Abdul Hamid, M.; Ahmed, N.; Jalar, A.; Shamsudin, R.; Othman, N.; Kar Keng, L.; Chiu, W.; Al-Rawi, H. High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor. Sensors 2016, 16, 839. [Google Scholar] [CrossRef]
- AlQahtani, H.R.; Al-Odayni, A.-B.M.; Alhamed, Y.; Grell, M. Bridged EGFET Design for the Rapid Screening of Sorbents as Sensitisers in Water-Pollution Sensors. Sensors 2023, 23, 7554. [Google Scholar] [CrossRef] [PubMed]
- Technologies, A. Home—SWCC. Available online: https://www.swcc.gov.sa/~/en (accessed on 26 December 2023).
- Technologies, A. Institute for Research, Innovation and Desalination Technologies—SWCC. Available online: https://www.swcc.gov.sa/en/ResearchInstitute (accessed on 28 December 2023).
- Rose, C.; Parker, A.; Jefferson, B.; Cartmell, E. The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1827–1879. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, R.; Dyke, T.R. Electric Dipole Moments and Nuclear Hyperfine Interactions for H2S, HDS, and D2S. J. Mol. Spectrosc. 1984, 103, 231–239. [Google Scholar] [CrossRef]
- Diamond, D.; McKervey, M.A. Calixarene-Based Sensing Agents. Chem. Soc. Rev. 1996, 25, 15. [Google Scholar] [CrossRef]
- Schmoltner, K.; Kofler, J.; Klug, A.; List-Kratochvil, E.J.W. Electrolyte-Gated Organic Field-Effect Transistor for Selective Reversible Ion Detection. Adv. Mater. 2013, 25, 6895–6899. [Google Scholar] [CrossRef] [PubMed]
- Althagafi, T.M.; Al Baroot, A.F.; Algarni, S.A.; Grell, M. A Membrane-Free Cation Selective Water-Gated Transistor. Analyst 2016, 141, 5571–5576. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, N.; Alqahtani, Z.; Grell, M. Sub-Nanomolar Detection of Cesium with Water-Gated Transistor. J. Appl. Phys. 2019, 126, 064502. [Google Scholar] [CrossRef]
- Alghamdi, N.; Alqahtani, Z.; Zhou, C.; Sano, N.; Conte, M.; Grell, M. Sensing Aromatic Pollutants in Water with Catalyst-Sensitized Water-Gated Transistor. Chem. Pap. 2020, 74, 4169–4180. [Google Scholar] [CrossRef]
- Alqahtani, Z.; Alghamdi, N.; Grell, M. Monitoring the Lead-and-Copper Rule with a Water-Gated Field Effect Transistor. J. Water Health 2020, 18, 159–171. [Google Scholar] [CrossRef]
- Alqahtani, Z.; Alghamdi, N.; Robshaw, T.J.; Dawson, R.; Ogden, M.D.; Buckely, A.; Grell, M. Water-Gated Transistor Using Ion Exchange Resin for Potentiometric Fluoride Sensing. Micromachines 2020, 11, 923. [Google Scholar] [CrossRef]
- Hill, A.V. A New Mathematical Treatment of Changes of Ionic Concentration in Muscle and Nerve under the Action of Electric Currents, with a Theory as to Their Mode of Excitation. J. Physiol. 1910, 40, 190–224. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, K.; Sun, H.; Zhao, S.; Chen, X.; Qian, D.; Mao, H.; Zhao, J. Novel Graphene Biosensor Based on the Functionalization of Multifunctional Nano-Bovine Serum Albumin for the Highly Sensitive Detection of Cancer Biomarkers. Nano-Micro Lett. 2019, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Bader, M. A Systematic Approach to Standard Addition Methods in Instrumental Analysis. J. Chem. Educ. 1980, 57, 703. [Google Scholar] [CrossRef]
- Bergveld, P. Thirty Years of ISFETOLOGY: What Happened in the Past 30 Years and What May Happen in the next 30 Years. Sens. Actuators B Chem. 2003, 88, 1–20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, Z.; Grell, M. A ‘Frugal’ EGFET Sensor for Waterborne H2S. Sensors 2024, 24, 407. https://doi.org/10.3390/s24020407
Alqahtani Z, Grell M. A ‘Frugal’ EGFET Sensor for Waterborne H2S. Sensors. 2024; 24(2):407. https://doi.org/10.3390/s24020407
Chicago/Turabian StyleAlqahtani, Zahrah, and Martin Grell. 2024. "A ‘Frugal’ EGFET Sensor for Waterborne H2S" Sensors 24, no. 2: 407. https://doi.org/10.3390/s24020407
APA StyleAlqahtani, Z., & Grell, M. (2024). A ‘Frugal’ EGFET Sensor for Waterborne H2S. Sensors, 24(2), 407. https://doi.org/10.3390/s24020407