Characterization of Temperature and Strain Changes in Lithium-Ion Batteries Based on a Hinged Differential Lever Sensitization Fiber Bragg Grating Strain–Temperature Simultaneous-Measurement Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. FBG Sensing and Temperature/Strain Measurement Principles
2.2. Structure Design of the Temperature and Strain Sensor
2.2.1. Design of a Hinged Differential Lever Amplification Sensitization Structure
2.2.2. FBG Temperature–Strain Fusion Detection Structure Design
2.3. Calibration of the FBG Sensor
2.4. Battery Testing Based on the Designed Sensor
3. Results and Discussion
3.1. Temperature and Strain Characterization of the Li-Ion Battery under Normal Conditions
3.2. Temperature and Strain Characterization for the Li-Ion Battery under Different C-Rates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Melot, B.C.; Tarascon, J.M. Design and Preparation of Materials for Advanced Electrochemical Storage. ACC Chem. Res. 2013, 46, 1226–1238. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef]
- Gür, T.M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ. Sci. 2018, 11, 2696–2767. [Google Scholar] [CrossRef]
- Hassoun, J.; Panero, S.; Reale, P.; Scrosati, B. A New, Safe, High-Rate and High-Energy Polymer Lithium-Ion Battery. Adv. Mater. 2009, 21, 4807–4810. [Google Scholar] [CrossRef] [PubMed]
- Deng, D. Li-ion batteries: Basics, progress, and challenges. Energy Sci. Eng. 2015, 3, 385–418. [Google Scholar] [CrossRef]
- Mihet-Popa, L.; Saponara, S. Toward Green Vehicles Digitalization for the Next Generation of Connected and Electrified Transport Systems. Energies 2018, 11, 3124. [Google Scholar] [CrossRef]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Rao, Z.; Wang, S. A review of power battery thermal energy management. Renew. Sustain. Energy Rev. 2011, 15, 4554–4571. [Google Scholar] [CrossRef]
- Feng, X.N.; Fang, M.; He, X.M.; Ouyang, M.G.; Lu, L.G.; Wang, H.; Zhang, M.X. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J. Power Sources 2014, 255, 294–301. [Google Scholar] [CrossRef]
- Chombo, P.V.; Laoonual, Y. A review of safety strategies of a Li-ion battery. J. Power Sources 2020, 478, 228649. [Google Scholar] [CrossRef]
- Ren, W.J.; Zheng, T.X.; Piao, C.H.; Benson, D.E.; Wang, X.; Li, H.Q.; Lu, S. Characterization of commercial 18,650 Li-ion batteries using strain gauges. J. Mater. Sci. 2022, 57, 13560–13569. [Google Scholar] [CrossRef]
- Pinson, M.B.; Bazant, M.Z. Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction. J. Electrochem. Soc. 2013, 160, A243–A250. [Google Scholar] [CrossRef]
- Rieger, B.; Schlueter, S.; Erhard, S.V.; Schmalz, J.; Reinhart, G.; Jossen, A. Multi-scale investigation of thickness changes in a commercial pouch type lithium-ion battery. J. Energy Storage 2016, 6, 213–221. [Google Scholar] [CrossRef]
- Lu, L.G.; Han, X.B.; Li, J.Q.; Hua, J.F.; Ouyang, M.G. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Shahid, S.; Agelin-Chaab, M. A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries. Energy Convers. Manag.-X 2022, 16, 100310. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Li, K.; Kang, E.; Quan, T.; Sun, T.; Luo, J.; Zhao, S.N. Simulation Investigation on Thermal Characteristics of Thermal Battery Activation Process Based on COMSOL. Crystals 2023, 13, 641. [Google Scholar] [CrossRef]
- Cheng, X.M.; Pecht, M. In Situ Stress Measurement Techniques on Li-ion Battery Electrodes: A Review. Energies 2017, 10, 591. [Google Scholar] [CrossRef]
- Mao, N.; Zhang, T.; Wang, Z.R.; Gadkari, S.; Wang, J.L.; He, T.F.; Gao, T.F.; Cai, Q. Revealing the thermal stability and component heat contribution ratio of overcharged lithium-ion batteries during thermal runaway. Energy 2023, 263, 125786. [Google Scholar] [CrossRef]
- Wang, L.B.; Li, B.Q.; Chen, J.Y.; Li, J.P.; Luo, Y.; Lv, T.L. Coupled effect of SOC and SOH on tensile behaviors of lithium-ion battery electrodes. J. Energy Storage 2023, 68, 107782. [Google Scholar] [CrossRef]
- Liao, Z.H.; Zhang, S.; Li, K.; Zhang, G.Q.; Habetler, T.G. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries. J. Power Sources 2019, 436, 226879. [Google Scholar] [CrossRef]
- Zhu, S.X.; Yang, L.; Wen, J.W.; Feng, X.L.; Zhou, P.J.; Xie, F.G.; Zhou, J.; Wang, Y.N. In operando measuring circumferential internal strain of 18650 Li-ion batteries by thin film strain gauge sensors. J. Power Sources 2021, 516, 230669. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Zhang, X.S.; Wang, W.W.; Yu, P. Detection and Prediction of the Early Thermal Runaway and Control of the Li-Ion Battery by the Embedded Temperature Sensor Array. Sensors 2023, 23, 5049. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.Y.; Zhao, Q.; Zheng, Y.; Xu, Y.Z.; Chen, Y.H.; Ni, J.S.; Zhao, Y. Recent Progress in Lithium-Ion Battery Safety Monitoring Based on Fiber Bragg Grating Sensors. Sensors 2023, 23, 5609. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.D.; Preger, Y.; Burroughs, H.; Sun, C.H.; Ohodnicki, P.R. Fiber Optic Sensing Technologies for Battery Management Systems and Energy Storage Applications. Sensors 2021, 21, 1397. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.X.; Chen, W.G.; Li, Z.Q.; Du, L.; Jiang, T.Y.; Cai, N.N.; Song, R.M.; Li, M.; Wang, J.X.; Wang, Z.Y. Experimental study on the transition process from partial discharge to arc discharge of oil-paper insulation based on fibre-optic sensors. IET Gener. Transm. Distrib. 2023, 17, 461–468. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Lei, J.L.; Chen, W.G.; Yang, T.H.; Song, Y.X.; Wu, K.J.; Liu, F. Oil-paper insulation partial discharge ultrasonic multifrequency sensing array based on fibre-optic Fabry-Perot sensor. High Volt. 2022, 7, 325–335. [Google Scholar] [CrossRef]
- Nascimento, M.; Novais, S.; Ding, M.S.; Ferreira, M.S.; Koch, S.; Passerini, S.; Pinto, J.L. Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries. J. Power Sources 2019, 410, 1–9. [Google Scholar] [CrossRef]
- Huang, J.Q.; Blanquer, L.A.; Bonefacino, J.; Logan, E.R.; Dalla Corte, D.A.; Delacourt, C.; Gallant, B.M.; Boles, S.T.; Dahn, J.R.; Tam, H.Y.; et al. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors. Nat. Energy 2020, 5, 674–683. [Google Scholar] [CrossRef]
- Blanquer, L.A.; Marchini, F.; Seitz, J.R.; Daher, N.; Bétermier, F.; Huang, J.Q.; Gervillié, C.; Tarascon, J.M. Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes. Nat. Commun. 2022, 13, 1153. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, X.; Jia, S.H.; Jin, Y.M.; Xu, S.P.; Chen, J.Z. High precision strain monitoring for lithium ion batteries based on fiber Bragg grating sensors. J. Power Sources 2019, 433, 226692. [Google Scholar] [CrossRef]
- Ee, Y.J.; Tey, K.S.; Lim, K.S.; Shrivastava, P.; Adnan, S.; Ahmad, H. Lithium-Ion Battery State of Charge (SoC) Estimation with Non-Electrical parameter using Uniform Fiber Bragg Grating (FBG). J. Energy Storage 2021, 40, 102704. [Google Scholar] [CrossRef]
- Novais, S.; Nascimento, M.; Grande, L.; Domingues, M.F.; Antunes, P.; Alberto, N.; Leitao, C.; Oliveira, R.; Koch, S.; Kim, G.T.; et al. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors. Sensors 2016, 16, 1394. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, M.; Novais, S.; Leitao, C.; Domingues, M.F.; Alberto, N.; Antunes, P.; Pinto, J.L. Lithium batteries temperature and strain fiber monitoring. In Proceedings of the 24th International Conference on Optical Fibre Sensors (OFS), Curitiba, Brazil, 28 September–2 October 2015; Spie-Int Soc Optical Engineering: Curitiba, Brazil, 2015. [Google Scholar]
- Nascimento, M.; Paixao, T.; Ferreira, M.S.; Pinto, J.L. Thermal Mapping of a Lithium Polymer Batteries Pack with FBGs Network. Batteries 2018, 4, 67. [Google Scholar] [CrossRef]
- Raghavan, A.; Kiesel, P.; Sommer, L.W.; Schwartz, J.; Lochbaum, A.; Hegyi, A.; Schuh, A.; Arakaki, K.; Saha, B.; Ganguli, A.; et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance. J. Power Sources 2017, 341, 466–473. [Google Scholar] [CrossRef]
- Sommer, L.W.; Kiesel, P.; Ganguli, A.; Lochbaum, A.; Saha, B.; Schwartz, J.; Bae, C.J.; Alamgir, M.; Raghavan, A. Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors. J. Power Sources 2015, 296, 46–52. [Google Scholar] [CrossRef]
- Sommer, L.W.; Raghavan, A.; Kiesel, P.; Saha, B.; Schwartz, J.; Lochbaum, A.; Ganguli, A.; Bae, C.-J.; Alamgir, M. Monitoring of Intercalation Stages in Lithium-Ion Cells over Charge-Discharge Cycles with Fiber Optic Sensors. J. Electrochem. Soc. 2015, 162, A2664. [Google Scholar] [CrossRef]
Major Authors | Sensitivity | Measurement Range | Resolution |
---|---|---|---|
Peng et al. [30] | 11.55 pm/με | 0–300 με | 1 pm (interrogator) |
Susana et al. [32] | ~8.55 pm/°C | 0–35 °C | 0.12 pm (interrogator) |
Nascimento et al. [33,34] | 7.43 pm/°C and 0.83 pm/µε | 5–50 °C | 5 pm (interrogator) |
Sommer et al. [35,36,37] | 10 pm/°C and 1 pm/µε | / | 0.1 °C, 1 µε |
Ee et al. [31] | 1 pm/µε and 11 pm/°C | The wavelength shift of 80–104 pm | / |
Item | Specification |
---|---|
Nominal capacity | 30 Ah (1.0 C discharge at 25 °C, 4.15–2.80 V) |
Operation voltage range | 2.80–4.15 V |
Standard charge current | Standard: 30 A (1.0 C) |
Maximum continuous charge current | 90 A (3.0 C) |
Maximum continuous discharge current | 150 A (5.0 C) |
Cell dimension | Length × width × thickness: 232.0 × 164.0 × 7.48 mm (30% SOC, 90 kgf Flat pressure test) |
Operating temperature | Charge: 0–55 °C, discharge: −30–55 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Chen, W.; Shen, Z.; Wang, Z.; Ming, Z.; Wang, C.; Tian, H.; Sang, T.; Song, R. Characterization of Temperature and Strain Changes in Lithium-Ion Batteries Based on a Hinged Differential Lever Sensitization Fiber Bragg Grating Strain–Temperature Simultaneous-Measurement Sensor. Sensors 2024, 24, 412. https://doi.org/10.3390/s24020412
Li M, Chen W, Shen Z, Wang Z, Ming Z, Wang C, Tian H, Sang T, Song R. Characterization of Temperature and Strain Changes in Lithium-Ion Batteries Based on a Hinged Differential Lever Sensitization Fiber Bragg Grating Strain–Temperature Simultaneous-Measurement Sensor. Sensors. 2024; 24(2):412. https://doi.org/10.3390/s24020412
Chicago/Turabian StyleLi, Meng, Weigen Chen, Zhiwei Shen, Ziyi Wang, Zifeng Ming, Changding Wang, Haoyuan Tian, Tianyi Sang, and Ruimin Song. 2024. "Characterization of Temperature and Strain Changes in Lithium-Ion Batteries Based on a Hinged Differential Lever Sensitization Fiber Bragg Grating Strain–Temperature Simultaneous-Measurement Sensor" Sensors 24, no. 2: 412. https://doi.org/10.3390/s24020412
APA StyleLi, M., Chen, W., Shen, Z., Wang, Z., Ming, Z., Wang, C., Tian, H., Sang, T., & Song, R. (2024). Characterization of Temperature and Strain Changes in Lithium-Ion Batteries Based on a Hinged Differential Lever Sensitization Fiber Bragg Grating Strain–Temperature Simultaneous-Measurement Sensor. Sensors, 24(2), 412. https://doi.org/10.3390/s24020412