Graphene Oxide, Carbon Nanotubes, and Polyelectrolytes-Based Impedanciometric E-Tongue for Estrogen Detection in Complex Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Array
2.2. Estrogen Solutions
2.3. Impedance Measurements
2.4. Effect of the Electrode’s Area Immersed in the Sample Solutions
2.5. Data Treatment
3. Results
3.1. Effect of Repeated Measurements
3.2. Results with Individual Films
3.3. Initial PCA Results
3.4. Training with PCA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; van der Ploeg, M.; van de Zee, S.E.A.T.M.; Ritsema, C.J. Emerging Pollutants in the Environment: A Challenge for Water Resource Management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. [Google Scholar] [CrossRef]
- Liu, J.-L.; Wong, M.-H. Pharmaceuticals and Personal Care Products (PPCPs): A Review on Environmental Contamination in China. Environiron. Int. 2013, 59, 208–224. [Google Scholar] [CrossRef]
- Roberts, J.; Kumar, A.; Du, J.; Hepplewhite, C.; Ellis, D.J.; Christy, A.G.; Beavis, S.G. Pharmaceuticals and Personal Care Products (PPCPs) in Australia’s Largest Inland Sewage Treatment Plant, and Its Contribution to a Major Australian River during High and Low Flow. Sci. Total Environiron. 2016, 541, 1625–1637. [Google Scholar] [CrossRef]
- Vandermeersch, G.; Lourenço, H.M.; Alvarez-Muñoz, D.; Cunha, S.; Diogène, J.; Cano-Sancho, G.; Sloth, J.J.; Kwadijk, C.; Barcelo, D.; Allegaert, W.; et al. Environmental Contaminants of Emerging Concern in Seafood—European Database on Contaminant Levels. Environiron. Res. 2015, 143, 29–45. [Google Scholar] [CrossRef]
- Daughton, C.G. Non-Regulated Water Contaminants: Emerging Research. Environ. Impact Assess. Rev. 2004, 24, 711–732. [Google Scholar] [CrossRef]
- Matamoros, V.; Arias, C.; Brix, H.; Bayona, J.M. Preliminary Screening of Small-Scale Domestic Wastewater Treatment Systems for Removal of Pharmaceutical and Personal Care Products. Water Res. 2009, 43, 55–62. [Google Scholar] [CrossRef]
- Salimi, M.; Esrafili, A.; Gholami, M.; Jonidi Jafari, A.; Rezaei Kalantary, R.; Farzadkia, M.; Kermani, M.; Sobhi, H.R. Contaminants of Emerging Concern: A Review of New Approach in AOP Technologies. Environ. Monit. Assess. 2017, 189, 414. [Google Scholar] [CrossRef]
- Houtman, C.J. Emerging Contaminants in Surface Waters and Their Relevance for the Production of Drinking Water in Europe. J. Integr. Environ. Sci. 2010, 7, 271–295. [Google Scholar] [CrossRef]
- Sarris, J.; Murphy, J.; Mischoulon, D.; Papakostas, G.I.; Fava, M.; Berk, M.; Ng, C.H. Adjunctive Nutraceuticals for Depression: A Systematic Review and Meta-Analyses. Am. J. Psychiatry 2016, 173, 575–587. [Google Scholar] [CrossRef]
- Heberer, T. Tracking Persistent Pharmaceutical Residues from Municipal Sewage to Drinking Water. J. Hydrol. 2002, 266, 175–189. [Google Scholar] [CrossRef]
- Ebele, A.J.; Abou-Elwafa Abdallah, M.; Harrad, S. Pharmaceuticals and Personal Care Products (PPCPs) in the Freshwater Aquatic Environment. Emerg. Contam. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Yueh, M.-F.; Tukey, R.H. Triclosan: A Widespread Environmental Toxicant with Many Biological Effects. Annu. Rev. Pharmacol. Toxicol. 2016, 56, 251–272. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.V.; Hurst, M.R.; Matthiessen, P.; Waldock, M.J. Characterization of Estrogenic Compounds in Water Samples Collected from United Kingdom Estuaries. Environ. Toxicol. Chem. 2001, 20, 2165–2170. [Google Scholar] [CrossRef] [PubMed]
- Boxall, A.B.A.; Rudd, M.A.; Brooks, B.W.; Caldwell, D.J.; Choi, K.; Hickman, S.; Innes, E.; Ostapyk, E.; Staveley, J.P.; Ankley, G.T.; et al. Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions? Environ. Health Perspect. 2012, 120, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Plutzer, J.; Avar, P.; Keresztes, D.; Sári, Z.; Kiss-Szarvák, I.; Vargha, M.; Maász, G.; Pirger, Z. Investigation of Estrogen Activity in the Raw and Treated Waters of Riverbank Infiltration Using a Yeast Estrogen Screen and Chemical Analysis. J. Water Health 2018, 16, 635–645. [Google Scholar] [CrossRef]
- Bertin, A.; Inostroza, P.A.; Quiñones, R.A. Estrogen Pollution in a Highly Productive Ecosystem off Central-South Chile. Mar. Pollut. Bull. 2011, 62, 1530–1537. [Google Scholar] [CrossRef]
- Coster, S.; Larebeke, N. Endocrine-Disrupting Chemicals: Associated Disorders and Mechanisms of Action. J. Environ. Public Health 2012, 2012, 713696. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, L.; Wang, Q.; Lu, G.; Li, Y. Adsorption Behaviors of 17 α -Ethinylestradiol in Sediment-Water System in Northern Taihu Lake, China. Sci. World J. 2014, 2014, 371075. [Google Scholar] [CrossRef]
- Zagalo, P.M.; Ribeiro, P.A.; Raposo, M. Detecting Traces of 17α-Ethinylestradiol in Complex Water Matrices. Sensors 2020, 20, 7324. [Google Scholar] [CrossRef]
- Arnold, S.F.; Robinson, M.K.; Notides, A.C.; Guillette, L.J.; Mclachlan, J.A. A Yeast Estrogen Screen for Examining the Relative Exposure of Cells to Natural and Xenoestrogens. Environ. Health Perspect. 1996, 104, 544–548. [Google Scholar] [CrossRef]
- Hettwer, K.; Jähne, M.; Frost, K.; Giersberg, M.; Kunze, G.; Trimborn, M.; Reif, M.; Türk, J.; Gehrmann, L.; Dardenne, F.; et al. Validation of Arxula Yeast Estrogen Screen Assay for Detection of Estrogenic Activity in Water Samples: Results of an International Interlaboratory Study. Sci. Total Environ. 2018, 621, 612–625. [Google Scholar] [CrossRef] [PubMed]
- Assunção, I.C.C.; Sério, S.; Ferreira, Q.; C.Jones, N.; V.Hoffmann, S.; A.Ribeiro, P.; Raposo, M. Graphene Oxide Layer-by-Layer Films for Sensors and Devices. Nanomaterials 2021, 11, 1156. [Google Scholar] [CrossRef]
- Magro, C.; Mateus, E.P.; Paz-Garcia, J.M.; Sério, S.; Raposo, M.; Ribeiro, A.B. Electronic Tongue Coupled to an Electrochemical Flow Reactor for Emerging Organic Contaminants Real Time Monitoring. Sensors 2019, 19, 5349. [Google Scholar] [CrossRef] [PubMed]
- Marques, I.; Magalhâes-Mota, G.; Pires, F.; Sério, S.; Ribeiro, P.A.; Raposo, M. Detection of Traces of Triclosan in Water. Appl. Surf. Sci. 2017, 421, 142–147. [Google Scholar] [CrossRef]
- Magro, C.; Moura, T.; Dionísio, J.; Ribeiro, P.A.; Raposo, M.; Sério, S. Nanostructured Metal Oxide Sensors for Antibiotic Monitoring in Mineral and River Water. Nanomaterials 2022, 12, 858. [Google Scholar] [CrossRef]
- Riul, A.; dos Santos, D.S.; Wohnrath, K.; Di Tommazo, R.; Carvalho, A.C.P.L.F.; Fonseca, F.J.; Oliveira, O.N.; Taylor, D.M.; Mattoso, L.H.C. Artificial Taste Sensor: Efficient Combination of Sensors Made from Langmuir−Blodgett Films of Conducting Polymers and a Ruthenium Complex and Self-Assembled Films of an Azobenzene-Containing Polymer. Langmuir 2002, 18, 239–245. [Google Scholar] [CrossRef]
- Taylor, D.M.; Macdonald, A.G. AC Admittance of the Metal/Insulator/Electrolyte Interface. J. Phys. D Appl. Phys. 1987, 20, 1277. [Google Scholar] [CrossRef]
- Elamine, Y.; Inácio, P.M.C.; Lyoussi, B.; Anjos, O.; Estevinho, L.M.; da Graça Miguel, M.; Gomes, H.L. Insight into the Sensing Mechanism of an Impedance Based Electronic Tongue for Honey Botanic Origin Discrimination. Sens. Actuators B Chem. 2019, 285, 24–33. [Google Scholar] [CrossRef]
- Riul, A.; Malmegrim, R.R.; Fonseca, F.J.; Mattoso, L.H.C. An Artificial Taste Sensor Based on Conducting Polymers. Biosens. Bioelectron. 2003, 18, 1365–1369. [Google Scholar] [CrossRef]
- Riul, A.; Gallardo Soto, A.M.; Mello, S.V.; Bone, S.; Taylor, D.M.; Mattoso, L.H.C. An Electronic Tongue Using Polypyrrole and Polyaniline. Synth. Met. 2003, 132, 109–116. [Google Scholar] [CrossRef]
- Ferreira, M.; Riul, A.; Wohnrath, K.; Fonseca, F.J.; Oliveira, O.N.; Mattoso, L.H.C. High-Performance Taste Sensor Made from Langmuir−blodgett Films of Conducting Polymers and a Ruthenium Complex. Anal. Chem. 2003, 75, 953–955. [Google Scholar] [CrossRef] [PubMed]
- del Valle, M. Electronic Tongues Employing Electrochemical Sensors. Electroanalysis 2010, 22, 1539–1555. [Google Scholar] [CrossRef]
- Di Natale, C.; Macagnano, A.; Davide, F.; D’Amico, A.; Legin, A.; Vlasov, Y.; Rudnitskaya, A.; Selezenev, B. Multicomponent Analysis on Polluted Waters by Means of an Electronic Tongue. Sens. Actuators B Chem. 1997, 44, 423–428. [Google Scholar] [CrossRef]
- Di Natale, C.; Paolesse, R.; Macagnano, A.; Mantini, A.; D’Amico, A.; Legin, A.; Lvova, L.; Rudnitskaya, A.; Vlasov, Y. Electronic Nose and Electronic Tongue Integration for Improved Classification of Clinical and Food Samples. Sens. Actuators B Chem. 2000, 64, 15–21. [Google Scholar] [CrossRef]
- Díaz-González, M.; Gutiérrez-Capitán, M.; Niu, P.; Baldi, A.; Jiménez-Jorquera, C.; Fernández-Sánchez, C. Electrochemical Devices for the Detection of Priority Pollutants Listed in the EU Water Framework Directive. TrAC Trends Anal. Chem. 2016, 77, 186–202. [Google Scholar] [CrossRef]
- Frader, J. Handbook of Modern Sensors Physics Designs and Applications, 5th ed.; Springer: Cham, Swizterland, 2016. [Google Scholar]
- Abegão, L.M.G.; Ribeiro, J.H.F.; Ribeiro, P.A.; Raposo, M. Nano-Molar Deltamethrin Sensor Based on Electrical Impedance of PAH/PAZO Layer-by-Layer Sensing Films. Sensors 2013, 13, 10167–10176. [Google Scholar] [CrossRef] [PubMed]
- Magro, C.; Sardinha, M.; Ribeiro, P.A.; Raposo, M.; Sério, S. Magnetron Sputtering Thin Films as Tool to Detect Triclosan in Infant Formula Powder: Electronic Tongue Approach. Coatings 2021, 11, 36. [Google Scholar] [CrossRef]
- Crespilho, F.N.; Zucolotto, V.; Oliveira, O.N.; Nart, F.C. Electrochemistry of Layer-by-Layer Films: A Review. Int. J. Electrochem. Sci. 2006, 1, 194–214. [Google Scholar] [CrossRef]
- Rasmus, B.; Age, K.S. Principal Component Analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar]
- Jolliffe Ian, T. and Cadima Jorge. Principal Component Analysis: A Review and Recent Developments. R. Soc. 2016, 374, 2065. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Roy, C. Review of Discretization Error Estimators in Scientific Computing. In Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2012. [Google Scholar] [CrossRef]
- Se, H.; Song, K.; Liu, H.; Zhang, W.; Wang, X.; Liu, J. A Dual Drift Compensation Framework Based on Subspace Learning and Cross-Domain Adaptive Extreme Learning Machine for Gas Sensors. Knowl. Based Syst. 2023, 259, 110024. [Google Scholar] [CrossRef]
- Se, H.; Song, K.; Sun, C.; Jiang, J.; Liu, H.; Wang, B.; Wang, X.; Zhang, W.; Liu, J. Online Drift Compensation Framework Based on Active Learning for Gas Classification and Concentration Prediction. Sens. Actuators B Chem. 2024, 398, 134716. [Google Scholar] [CrossRef]
Concentration (mol/L) | Control | Sample 1 | Sample 2 | Sample 3 | ||||
---|---|---|---|---|---|---|---|---|
Magnitude ×10−5 (Ω) | Phase (°) | Magnitude ×10−5 (Ω) | Phase (°) | Magnitude ×10−5 (Ω) | Phase (°) | Magnitude ×10−5 (Ω) | Phase (°) | |
0 | 7.19 | −72.0 | 2.47 | −83.0 | 2.79 | −81.8 | 2.90 | −83.0 |
10−16 | 7.85 | −72.1 | 2.34 | −83.8 | 2.54 | −81.6 | 2.98 | −81.6 |
10−13 | 8.06 | −71.3 | 2.81 | −83.0 | 2.63 | −80.7 | 2.66 | −82.0 |
10−10 | 10.54 | −71.2 | 3.24 | −82.2 | 2.68 | −81.6 | 3.79 | −80.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, T.; Fino, M.H.; Raposo, M. Graphene Oxide, Carbon Nanotubes, and Polyelectrolytes-Based Impedanciometric E-Tongue for Estrogen Detection in Complex Matrices. Sensors 2024, 24, 481. https://doi.org/10.3390/s24020481
Reis T, Fino MH, Raposo M. Graphene Oxide, Carbon Nanotubes, and Polyelectrolytes-Based Impedanciometric E-Tongue for Estrogen Detection in Complex Matrices. Sensors. 2024; 24(2):481. https://doi.org/10.3390/s24020481
Chicago/Turabian StyleReis, Tiago, Maria Helena Fino, and Maria Raposo. 2024. "Graphene Oxide, Carbon Nanotubes, and Polyelectrolytes-Based Impedanciometric E-Tongue for Estrogen Detection in Complex Matrices" Sensors 24, no. 2: 481. https://doi.org/10.3390/s24020481
APA StyleReis, T., Fino, M. H., & Raposo, M. (2024). Graphene Oxide, Carbon Nanotubes, and Polyelectrolytes-Based Impedanciometric E-Tongue for Estrogen Detection in Complex Matrices. Sensors, 24(2), 481. https://doi.org/10.3390/s24020481