A Survey of Vehicular VLC Methodologies
Abstract
:1. Introduction
2. Visible Light Communication
2.1. General VLC Architectures
- A.
- VLC Transmitter
- B.
- VLC Receiver
- C.
- VLC Channel
2.2. Purposes of the Visible Light Communication
- VLC Advantages
- A.
- Large Unlicensed Bandwidth
- B.
- Secure for Human Health
- C.
- Security and Interference
- D.
- Energy-efficient and inexpensive
- 2.
- VLC Challenges
- Line-of-Sight (LoS) Blockage
- Limited Transmission Range
- Interference and Noise
- 3.
- VLC Application
- Li-Fi
- Localization
- Smart Homes
3. Vehicular VLC Overview
3.1. General Context
3.2. Reviews on Vehicular VLC
- A.
- Vehicle-to-vehicle reviews
- B.
- Infrastructure-to-vehicle reviews
- C.
- Prototype scenarios reviews
3.3. Vehicular VLC Architecture
4. Technical Challenges in Vehicular VLC and Solutions
4.1. Impact of Reflection
4.2. Sun and Artificial Light Sources
4.3. Weather Conditions
5. Vehicular VLC Applications
5.1. Lane Changing
Refs. | Transmitter | Receiver | Scenario | Observations |
---|---|---|---|---|
[36] | Headlights | One PD | V2V |
|
[73,112] | Taillight | One PD | V2V |
|
[76] | Headlights | One PD | V2V |
|
[32] | Headlight | One PD | V2V |
|
[113] | Headlights | One PD | V2V |
|
[114] | Headlights | One PD | V2V |
|
[39] | Headlights | Twelve PDs | V2V |
|
[55] | Headlight and Taillight | Two PDs | V2V |
|
[108] | White LED | Three PDs | V2V |
|
[109] | Headlights | Four PDs | V2V |
|
[37] | Headlights | Four PDs | V2V |
|
[110] | Traffic Light | One PD | Hybrid I2V, V2I |
|
[80] | Traffic Light | One PD | I2V |
|
[111] | Streetlight | One PD | I2V |
|
[35] | Streetlight | One PD | I2V |
|
[38] | Headlights and Taillights Streetlight and Traffic Light | Nine PDs | V2V and V2I |
|
5.2. Intersection Assistance
5.3. Platooning
6. Vehicular VLC Channel Modeling and Propagation Characteristics
6.1. Key Parameters of Vehicular VLC
- A.
- Asymmetrical pattern
- B.
- Mobility
- C.
- Weather conditions
- D.
- Receiver aperture size
6.2. Existing Vehicular VLC Channel Models
- V2V with High-Beam Headlights
- Linear model
- Exponential Model
- Comprehensive Model
- 2.
- V2V with Low-Beam Headlight
- 3.
- V2V with Taillights
- 4.
- I2V with Traffic Lights
- 5.
- I2V with Street lights
- and can be determined for any given scenario byHere,, i = 1,2 is defined as
7. Vehicular VLC Research Trends and Future Directions
- A.
- Research Trends
- Multi-hop Relaying
- Reconfigurable Intelligent Surfaces
- B.
- Lessons Learned
- Earlier results have focused on indoor channel modeling, which does not apply to vehicular VLC systems with inherently different characteristics. For example, earlier works assumed the ideal Lambertian model for vehicular light sources, which fails to match the illumination characteristics of automotive headlights, taillights, traffic lights, and streetlights, with their asymmetrical intensity distributions. Any modification of the antenna pattern will significantly affect the communication performance.
- The effects of road reflectance, road type, weather conditions, the orientation of the user/vehicle equipment and infrastructure, receiver aperture size, and the sunlight might strongly affect the link performance of vehicular VLC systems. Also, vehicular mobility can result in LoS blockage, and thus, assisting technologies such as relaying techniques and RISs should be utilized. It is paramount to investigate the effects of these factors on traffic safety based on realistic channel models.
- C.
- Future Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BER | Bit Error Rate |
CAD | Computer-Aided Design |
CIR | Channel Impulse Response |
DSRC | Dedicated Short-Range Communication |
DD | Direct Detection |
FOV | Field of View |
HLs | Headlights |
I2V | Infrastructure-to-Vehicle |
ITS | Intelligent Transportation System |
LED | Light-Emitting Diode |
LoS | Line-of-Sight |
LTE | Long-Term Evolution |
NLoS | Non-Line-of-Sight |
OWC | Optical Wireless Communication |
RMS | Root mean square |
OOK | On–off keying |
PWM | Pulse width modulation |
PPM | Pulse position modulation |
OFDM | Orthogonal frequency division multiplexing |
PD | Photodetector |
Probability Distribution Function | |
RF | Radio Frequency |
SNR | Signal-to-Noise Ratio |
TLs | Taillights |
V2X | Vehicle-to-Everything |
V2V | Vehicle-to-Vehicle |
VLC | Visible Light Communication |
V-VLC | Vehicular Visible Light Communication |
References
- Pribyl, O.; Pribyl, P.; Lom, M.; Svitek, M. Modeling of smart cities based on ITS architecture. IEEE Intell. Transp. Syst. Mag. 2018, 11, 28–36. [Google Scholar] [CrossRef]
- Miucic, R. Connected Vehicles. In Intelligent Transportation Systems; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Chen, S.; Hu, J.; Shi, Y.; Peng, Y.; Fang, J.; Zhao, R.; Zhao, L. Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G. IEEE Commun. Stand. Mag. 2017, 1, 70–76. [Google Scholar] [CrossRef]
- MacHardy, Z.; Khan, A.; Obana, K.; Iwashina, S. V2X access technologies: Regulation, research, and remaining challenges. IEEE Commun. Surv. Tutor. 2018, 20, 1858–1877. [Google Scholar] [CrossRef]
- Ghafoor, K.Z.; Guizani, M.; Kong, L.; Maghdid, H.S.; Jasim, K.F. Enabling efficient coexistence of DSRC and C-V2X in vehicular networks. IEEE Wirel. Commun. 2019, 27, 134–140. [Google Scholar] [CrossRef]
- Cai, X.; Peng, B.; Yin, X.; Yuste, A.P. Hough-transform-based cluster identification and modeling for V2V channels based on measurements. IEEE Trans. Veh. Technol. 2017, 67, 3838–3852. [Google Scholar] [CrossRef]
- Gao, S.; Lim, A.; Bevly, D. An empirical study of DSRC V2V performance in truck platooning scenarios. Digit. Commun. Netw. 2016, 2, 233–244. [Google Scholar] [CrossRef]
- Shen, W.H.; Tsai, H.M. Testing vehicle-to-vehicle visible light communications in real-world driving scenarios. In Proceedings of the 2017 IEEE Vehicular Networking Conference (VNC), Torino, Italy, 27–29 November 2017. [Google Scholar]
- Vivek, N.; Srikanth, S.V.; Saurabh, P.; Vamsi, T.P.; Raju, K. On field performance analysis of IEEE 802.11 p and WAVE protocol stack for V2V & V2I communication. In Proceedings of the International Conference on Information Communication and Embedded Systems (ICICES2014), Chennai, India, 27–28 February 2014. [Google Scholar]
- Xu, Z.; Li, X.; Zhao, X.; Zhang, M.H.; Wang, Z. DSRC versus 4G-LTE for connected vehicle applications: A study on field experiments of vehicular communication performance. J. Adv. Transp. 2017, 2017, 2750452. [Google Scholar] [CrossRef]
- Gerhátné Udvary, E. Visible light communication survey. Infocommunications J. 2019, 11, 22–31. [Google Scholar] [CrossRef]
- Aghaei, F.; Eldeeb, H.B.; Bariah, L.; Muhaidat, S.; Uysal, M. Comparative Characterization of Indoor VLC and MMW Communications via Ray Tracing Simulations. IEEE Access 2023, 11, 90345–90357. [Google Scholar] [CrossRef]
- Eldeeb, H.B.; Hosney, M.; Elsayed, H.M.; Badr, R.I.; Uysal, M.; Selmy, H.A.I. Optimal Resource Allocation and Interference Management for Multi-User Uplink Light Communication Systems with Angular Diversity Technology. IEEE Access 2020, 8, 203224–203236. [Google Scholar] [CrossRef]
- Karunatilaka, D.; Zafar, F.; Kalavally, V.; Parthiban, R. LED based indoor visible light communications: State of the art. IEEE Commun. Surv. Tutor. 2015, 17, 1649–1678. [Google Scholar] [CrossRef]
- Cailean, A.M.; Dimian, M. Impact of IEEE 802.15. 7 standard on visible light communications usage in automotive applications. IEEE Commun. Mag. 2017, 55, 169–175. [Google Scholar] [CrossRef]
- Car Lighting District. Halogen vs. HID vs. LED—Which is Best? 2019. Available online: https://www.carlightingdistrict.com/ (accessed on 12 January 2024).
- Liu, C.B.; Sadeghi, B.; Knightly, E.W. Enabling vehicular visible light communication (V2LC) networks. In Vehicular Inter-Networking; Association for Computing Machinery: New York, NY, USA, 2011. [Google Scholar]
- Matheus LE, M.; Vieira, A.B.; Vieira, L.F.; Vieira, M.A.; Gnawali, O. Visible light communication: Concepts, applications and challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3204–3237. [Google Scholar] [CrossRef]
- Rehman, S.U.; Ullah, S.; Chong PH, J.; Yongchareon, S.; Komosny, D. Visible light communication: A system perspective—Overview and challenges. Sensors 2019, 19, 1153. [Google Scholar] [CrossRef]
- Lian, J.; Vatansever, Z.; Noshad, M.; Brandt-Pearce, M. Indoor visible light communications, networking, and applications. J. Phys. Photonics 2019, 1, 012001. [Google Scholar] [CrossRef]
- Rahman, A.M.; Li, T.; Wang, Y. Recent advances in indoor localization via visible lights: A survey. Sensors 2020, 20, 1382. [Google Scholar] [CrossRef]
- Ibhaze, A.E.; Orukpe, P.E.; Edeko, F.O. High capacity data rate system: Review of visible light communications technology. J. Electron. Sci. Technol. 2020, 18, 100055. [Google Scholar] [CrossRef]
- Memedi, A.; Dressler, F. Vehicular visible light communications: A survey. IEEE Commun. Surv. Tutor. 2020, 23, 161–181. [Google Scholar] [CrossRef]
- Shaaban, K.; Shamim MH, M.; Abdur-Rouf, K. Visible light communication for intelligent transportation systems: A review of the latest technologies. J. Traffic Transp. Eng. (Engl. Ed.) 2021, 8, 483–492. [Google Scholar] [CrossRef]
- Abuella, H.; Elamassie, M.; Uysal, M.; Xu, Z.; Serpedin, E.; Qaraqe, K.A.; Ekin, S. Hybrid RF/VLC systems: A comprehensive survey on network topologies, performance analyses, applications, and future directions. IEEE Access 2021, 9, 160402–160436. [Google Scholar] [CrossRef]
- Yahia, S.; Meraihi, Y.; Ramdane-Cherif, A.; Gabis, A.B.; Acheli, D.; Guan, H. A survey of channel modeling techniques for visible light communications. J. Netw. Comput. Appl. 2021, 194, 103206. [Google Scholar] [CrossRef]
- Geng, Z.; Khan, F.N.; Guan, X.; Dong, Y. Advances in Visible Light Communication Technologies and Applications. Photonics 2022, 9, 893. [Google Scholar] [CrossRef]
- Cailean, A.; Cagneau, B.; Chassagne, L.; Topsu, S.; Alayli, Y.; Blosseville, J.M. Visible light communications: Application to cooperation between vehicles and road infrastructures. In Proceedings of the 2012 IEEE Intelligent Vehicles Symposium, Madrid, Spain, 3–7 June 2012. [Google Scholar]
- Căilean, A.M.; Dimian, M. Current challenges for visible light communications usage in vehicle applications: A survey. IEEE Commun. Surv. Tutor. 2017, 19, 2681–2703. [Google Scholar] [CrossRef]
- Alsalami, F.M.; Aigoro, N.; Mahmoud, A.A.; Ahmad, Z.; Haigh, P.A.; Haas, O.C.; Rajbhandari, S. Impact of vehicle headlights radiation pattern on dynamic vehicular VLC channel. J. Light. Technol. 2021, 39, 3162–3168. [Google Scholar] [CrossRef]
- Aly, B.; Elamassie, M.; Uysal, M. Vehicular VLC Channel Model for a Low-Beam Headlight Transmitter. In Proceedings of the 2021 17th International Symposium on Wireless Communication Systems (ISWCS), Berlin, Germany, 6–9 September 2021. [Google Scholar]
- Aly, B.; Elamassie, M.; Eldeeb, H.B.; Uysal, M. Experimental investigation of lens combinations on the performance of vehicular VLC. In Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2020. [Google Scholar]
- Amjad, M.S.; Tebruegge, C.; Memedi, A.; Kruse, S.; Kress, C.; Scheytt, C.; Dressler, F. An IEEE 802.11 compliant SDR-based system for vehicular visible light communications. In Proceedings of the ICC 2019-2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019. [Google Scholar]
- Ashraf, K.; Islam, S.T.; Hosseini, A.S.; Ashok, A. Motion characterization for vehicular visible light communications. In Proceedings of the 2019 11th International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, 7–11 January 2019. [Google Scholar]
- Demir, M.S.; Eldeeb, H.B.; Uysal, M. Comp-based dynamic handover for vehicular vlc networks. IEEE Commun. Lett. 2020, 24, 2024–2028. [Google Scholar] [CrossRef]
- Elamassie, M.; Karbalayghareh, M.; Miramirkhani, F.; Kizilirmak, R.C.; Uysal, M. Effect of fog and rain on the performance of vehicular visible light communications. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018. [Google Scholar]
- Eldeeb, H.B.; Uysal, M. Vehicle-to-vehicle visible light communication: How to select receiver locations for optimal performance? In Proceedings of the 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2019. [Google Scholar]
- Eldeeb, H.B.; Sait, S.M.; Uysal, M. Visible light communication for connected vehicles: How to achieve the omnidirectional coverage? IEEE Access 2021, 9, 103885–103905. [Google Scholar] [CrossRef]
- Eldeeb, H.B.; Miramirkhani, F.; Uysal, M. A path loss model for vehicle-to-vehicle visible light communications. In Proceedings of the 2019 15th International Conference on Telecommunications (ConTEL), Graz, Austria, 3–5 July 2019. [Google Scholar]
- Eldeeb, H.B.; Selmy, H.A.; Elsayed, H.M.; Abd El-Samie, F.E.; Badr, R.I. Visible light communication based on CPM-OFDM with chaotic interleaving scheme. In Proceedings of the 2017 IEEE Photonics Conference (IPC), Orlando, FL, USA, 1–5 October 2017. [Google Scholar]
- Chaleshtori, Z.N.; Zvanovec, S.; Ghassemlooy, Z.; Eldeeb, H.B.; Uysal, M. Coverage of a shopping mall with flexible OLED-based visible light communications. Opt. Express 2020, 28, 10015–10026. [Google Scholar] [CrossRef]
- Islim, M.S.; Ferreira, R.X.; He, X.; Xie, E.; Videv, S.; Viola, S.; Dawson, M.D. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photonics Res. 2017, 5, A35–A43. [Google Scholar] [CrossRef]
- Mapunda, G.A.; Ramogomana, R.; Marata, L.; Basutli, B.; Khan, A.S.; Chuma, J.M. Indoor visible light communication: A tutorial and survey. Wirel. Commun. Mob. Comput. 2020, 2020, 8881305. [Google Scholar] [CrossRef]
- Modepalli, K.; Parsa, L. Dual-purpose offline LED driver for illumination and visible light communication. IEEE Trans. Ind. Appl. 2014, 51, 406–419. [Google Scholar] [CrossRef]
- Eldeeb, H.B.; Selmy, H.A.; Elsayed, H.M.; Badr, R.I. Interference mitigation and capacity enhancement using constraint field of view ADR in downlink VLC channel. IET Commun. 2018, 16, 1968–1978. [Google Scholar] [CrossRef]
- Kashef, M.; Abdallah, M.; Qaraqe, K.; Haas, H.; Uysal, M. Coordinated interference management for visible light communication systems. J. Opt. Commun. Netw. 2015, 17, 1098–1108. [Google Scholar] [CrossRef]
- Eldeeb, H.B.; Selmy, H.A.; Elsayed, H.M.; Badr, R.I. Co-channel interference cancellation using constraint field of view ADR in VLC channel. In Proceedings of the 2017 IEEE Photonics Conference (IPC) Part II, Orlando, FL, USA, 1–5 October 2017. [Google Scholar]
- Lin, J.C. Current activities on exposure limits for humans in the radio-frequency region [Telecommunications health and Safety]. IEEE Antennas Propag. Mag. 2014, 56, 256–258. [Google Scholar] [CrossRef]
- Marin-Garcia, I.; Guerra, V.; Chavez-Burbano, P.; Rabadan, J.; Perez-Jimenez, R. Evaluating the risk of eavesdropping a visible light communication channel. IET Optoelectron. 2018, 12, 289–292. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, J.; Trescases, O. A dimmable LED driver for Visible Light Communication (VLC) based on LLC resonant DC-DC converter operating in burst mode. In Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013. [Google Scholar]
- Ma, H.; Lampe, L.; Hranilovic, S. Integration of indoor visible light and power line communication systems. In Proceedings of the 2013 IEEE 17th International Symposium on Power Line Communications and Its Applications, Johannesburg, South Africa, 24–27 March 2013. [Google Scholar]
- Guan, X.; Yang, Q.; Wang, T.; Chan, C.C.K. Phase-aligned physical-layer network coding in visible light communications. IEEE Photonics J. 2019, 11, 7902409. [Google Scholar] [CrossRef]
- Shao, S.; Khreishah, A.; Ayyash, M.; Rahaim, M.B.; Elgala, H.; Jungnickel, V.; Schulz, D.; Little, T.D.C.; Hilt, J.; Freund, R. Design and analysis of a visible-light-communication enhanced WiFi system. J. Opt. Commun. Netw. 2015, 7, 960–973. [Google Scholar] [CrossRef]
- Tao, Z.; Chen, M.; Yang, Z.; Shi, J.; Zhao, J.; Liu, W. Optimal Control for Digital-Twin THz/VLC Communication Networks. In Proceedings of the 2022 IEEE International Conference on Communications Workshops (ICC Workshops), Seoul, Republic of Korea, 16–20 May 2022. [Google Scholar]
- Eldeeb, H.B.; Yanmaz, E.; Uysal, M. MAC layer performance of multi-hop vehicular VLC networks with CSMA/CA. In Proceedings of the 2020 12th International Symposium On Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2020. [Google Scholar]
- Yahia, S.; Meraihi, Y.; Ramdane-Cherif, A.; Gabis, A.B.; Eldeeb, H.B. Performance evaluation of vehicular Visible Light Communication based on angle-oriented receiver. Comput. Commun. 2022, 191, 500–509. [Google Scholar] [CrossRef]
- Gong, C.; Li, S.; Gao, Q.; Xu, Z. Power and rate optimization for visible light communication system with lighting constraints. IEEE Trans. Signal Process. 2015, 63, 4245–4256. [Google Scholar] [CrossRef]
- Mai, D.H.; Pham, A.T. Implementation and evaluation of VLC-based indoor positioning systems for smart supermarkets. In Proceedings of the 2018 9th International Conference on Awareness Science and Technology (iCAST), Fukuoka, Japan, 19–21 September 2018; pp. 273–278. [Google Scholar]
- Aqoob, I.; Hashem IA, T.; Mehmood, Y.; Gani, A.; Mokhtar, S.; Guizani, S. Enabling communication technologies for smart cities. IEEE Commun. Mag. 2017, 55, 112–120. [Google Scholar] [CrossRef]
- Fekete, G.; Mészáros, G.; Udvary, E.; Fehér, G.; Berceli, T. Visible light communication channel disturbances and examination of the modulation formats. Int. J. Microw. Wirel. Technol. 2016, 8, 1163–1171. [Google Scholar] [CrossRef]
- Fehér, G.; Udvary, E. VLC-based indoor localization. In Optical Wireless Communications; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Boubakri, W.; Abdallah, W.; Boudriga, N. A light-based communication architecture for smart city applications. In Proceedings of the 2015 17th International Conference on Transparent Optical Networks (ICTON), Budapest, Hungary, 5–9 July 2015. [Google Scholar]
- Malta, L.; Miyajima, C.; Takeda, K. A study of driver behavior under potential threats in vehicle traffic. IEEE Trans. Intell. Transp. Syst. 2009, 10, 201–210. [Google Scholar] [CrossRef]
- Carter, A. The status of vehicle-to-vehicle communication as a means of improving crash prevention performance. Tech. Rep. 2005, 05-0264. Available online: http://www-nrd.nhtsa.dot.gov/pdf/nrd-01/esv/esv19/05-0264-W.pdf (accessed on 12 January 2024).
- Meneguette, R.I.; De Grande, R.; Loureiro, A.A. Intelligent Transport System in Smart Cities; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- DSRC, Toyota Commits Big to. Available online: https://www.gardnerweb.com/automotive (accessed on 16 April 2018).
- V2X, Cellular. Available online: https://www.qualcomm.com/invention/5g/%20cellular-v2x/ecosystem (accessed on 1 March 2020).
- Uysal, M.; Ghassemlooy, Z.; Bekkali, A.; Kadri, A.; Menouar, H. Visible light communication for vehicular networking: Performance study of a V2V system using a measured headlamp beam pattern model. IEEE Veh. Technol. Mag. 2015, 10, 45–53. [Google Scholar] [CrossRef]
- Sharda, P.; Bhatnagar, M.R. Vehicular Visible Light Communication System: Modeling and Visualizing Critical Outdoor Propagation Characteristics. IEEE Trans. Veh. Technol. 2023, 72, 14317–14329. [Google Scholar] [CrossRef]
- Vieira, M.A.; Vieira, M.; Louro, P.; Vieira, P. Connected cars: Road-to-vehicle communication through visible light. In Proceedings of the Next-Generation Optical Communication: Components, Sub-Systems, and Systems VIII, San Francisco, CA, USA, 1 February 2019. [Google Scholar]
- Eso, E.; Ghassemlooy, Z.; Zvanovec, S.; Gholami, A.; Burton, A.; Hassan, N.B.; Younus, O.I. Experimental demonstration of vehicle to road side infrastructure visible light communications. In Proceedings of the 2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC), Teheran, Iran, 27–28 April 2019. [Google Scholar]
- Al-Kinani, A.; Sun, J.; Wang, C.X.; Zhang, W.; Ge, X.; Haas, H. A 2-D non-stationary GBSM for vehicular visible light communication channels. IEEE Trans. Wirel. Commun. 2018, 17, 7981–7992. [Google Scholar] [CrossRef]
- Eldeeb, H.B.; Eso, E.; Jarchlo, E.A.; Zvanovec, S.; Uysal, M.; Ghassemlooy, Z.; Sathian, J. Vehicular VLC: A ray tracing study based on measured radiation patterns of commercial taillights. IEEE Photonics Technol. Lett. 2021, 33, 904–907. [Google Scholar] [CrossRef]
- Eldeeb, H.B.; Elamassie, M.; Uysal, M. Vehicle-to-infrastructure visible light communications: Channel modelling and capacity calculations. In Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2020. [Google Scholar]
- Eso, E.; Burton, A.; Hassan, N.B.; Abadi, M.M.; Ghassemlooy, Z.; Zvanovec, S. Experimental investigation of the effects of fog on optical camera-based VLC for a vehicular environment. In Proceedings of the 2019 15th International Conference on Telecommunications (ConTEL), Graz, Austria, 3–5 July 2019. [Google Scholar]
- Karbalayghareh, M.; Miramirkhani, F.; Eldeeb, H.B.; Kizilirmak, R.C.; Sait, S.M.; Uysal, M. Channel modelling and performance limits of vehicular visible light communication systems. IEEE Trans. Veh. Technol. 2020, 69, 6891–6901. [Google Scholar] [CrossRef]
- Yahia, S.; Meraihi, Y.; Ramdane-Cherif, A.; Ho, T.D.; Eldeeb, H.B. Enhancement of Vehicular Visible Light Communication Using Spherical Detector and Custom Lens Combinations. IEEE Access 2023, 11, 21600–21611. [Google Scholar] [CrossRef]
- Yahia, S.; Meraihi, Y.; Refas, S.; Gabis, A.B.; Ramdane-Cherif, A.; Eldeeb, H.B. Performance study and analysis of MIMO visible light communication-based V2V systems. Opt. Quantum Electron. 2022, 54, 575. [Google Scholar] [CrossRef]
- Aghaei, F.; Eldeeb, H.B.; Uysal, M. A comparative evaluation of propagation characteristics of vehicular VLC and MMW channels. IEEE Trans. Veh. Technol. 2023, 73, 4–13. [Google Scholar] [CrossRef]
- Seminara, M.; Nawaz, T.; Caputo, S.; Mucchi, L.; Catani, J. Characterization of field of view in visible light communication systems for intelligent transportation systems. IEEE Photonics J. 2020, 12, 7903816. [Google Scholar] [CrossRef]
- Caputo, S.; Mucchi, L.; Cataliotti, F.; Seminara, M.; Nawaz, T.; Catani, J. Measurement-based VLC channel characterization for I2V communications in a real urban scenario. Veh. Commun. 2021, 28, 100305. [Google Scholar] [CrossRef]
- Arafa, N.A.; Arafa, M.S.; Abd El-atty, S.M.; El-Samie FE, A.; Eldeeb, H.B. Capacity analysis of infrastructure-to-vehicle visible light communication with an optimized non-orthogonal multiple access scheme. Opt. Quantum Electron. 2023, 55, 840. [Google Scholar] [CrossRef]
- Eldeeb, H.B.; Elamassie, M.; Sait, S.M.; Uysal, M. Infrastructure-to-Vehicle Visible Light Communications: Channel Modelling and Performance Analysis. IEEE Trans. Veh. Technol. 2022, 71, 2240–2250. [Google Scholar] [CrossRef]
- Zadobrischi, E. System prototype proposed for vehicle communications based on VLC-RF technologies adaptable on infrastructure. In Proceedings of the 2020 International Conference on Development and Application Systems (DAS), Suceava, Romania, 21–23 May 2020. [Google Scholar]
- Nawaz, T.; Seminara, M.; Caputo, S.; Mucchi, L.; Catani, J. Low-latency VLC system with Fresnel receiver for I2V ITS applications. J. Sens. Actuator Netw. 2020, 9, 35. [Google Scholar] [CrossRef]
- Avătămăniței, S.A.; Beguni, C.; Căilean, A.M.; Dimian, M.; Popa, V. Evaluation of misalignment effect in vehicle-to-vehicle visible light communications: Experimental demonstration of a 75 meters link. Sensors 2021, 21, 3577. [Google Scholar] [CrossRef]
- Tettey, D.K.; Elamassie, M.; Uysal, M. Experimental Investigation of Angle Diversity Receiver for Vehicular VLC. In Proceedings of the 29th Annual International Conference on Mobile Computing and Networking, Madrid, Spain, 2–6 October 2023. [Google Scholar]
- Dimitrov, S.; Haas, H. Principles of LED Light Communications: Towards Networked Li-Fi; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar] [CrossRef]
- Kruse, S.; Kress, C.; Memedi, A.; Tebruegge, C.; Amjad, M.S.; Scheytt, C.; Dressler, F. Design of an automotive visible light communications link using an off-the-shelf led headlight. In Proceedings of the ANALOG 2018; 16th GMM/ITG-Symposium, Munich/Neubiberg, Germany, 13–14 September 2018. [Google Scholar]
- Tian, Z.; Wright, K.; Zhou, X. The darklight rises: Visible light communication in the dark. In Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, New York, NY, USA, 3–7 October 2016. [Google Scholar]
- Class, T.; Memedi, A.; Dressler, F. Reduced multiuser-interference for vehicular VLC using SDMA and matrix headlights. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Big Island, HI, USA, 9–13 December 2019. [Google Scholar]
- Class, T.; Zhang, Q.; Falko, D. Optical interference reduction with spatial filtering receiver for vehicular visible light communication. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019. [Google Scholar]
- Khalighi, M.A.; Uysal, M. Survey on free space optical communication: A communication theory perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Jiang, R.; Wang, Q.; Haas, H.; Wang, Z. Joint user association and power allocation for cell-free visible light communication networks. IEEE J. Sel. Areas Commun. 2017, 36, 136–148. [Google Scholar] [CrossRef]
- Luo, P.; Ghassemlooy, Z.; Le Minh, H.; Bentley, E.; Burton, A.; Tang, X. Performance analysis of a car-to-car visible light communication system. Appl. Opt. 2015, 54, 1696–1706. [Google Scholar] [CrossRef]
- Claas, T.; Memedi, A.; Dressler, F. Empirical characterization of the NLOS component for vehicular visible light communication. In Proceedings of the 2019 IEEE Vehicular Networking Conference (VNC), Los Angeles, CA, USA, 4–6 December 2019. [Google Scholar]
- Turan, B.; Narmanlioglu, O.; Koc, O.N.; Kar, E.; Coleri, S.; Uysal, M. Measurement based non-line-of-sight vehicular visible light communication channel characterization. IEEE Trans. Veh. Technol. 2022, 71, 10110–10114. [Google Scholar] [CrossRef]
- Alsalami, F.M.; Haas, O.C.; Al-Kinani, A.; Wang, C.X.; Ahmad, Z.; Rajbhandari, S. Impact of dynamic traffic on vehicle-to-vehicle visible light communication systems. IEEE Syst. J. 2021, 16, 3512–3521. [Google Scholar] [CrossRef]
- Cui, K. Physical Layer Characteristics and Techniques for Visible Light Communications; University of California: Riverside, CA, USA, 2012. [Google Scholar]
- Turan, B.; Gurbilek, G.; Uyrus, A.; Ergen, S.C. Vehicular VLC frequency domain channel sounding and characterization. In Proceedings of the 2018 IEEE Vehicular Networking Conference (VNC), Taipei, Taiwan, 5–7 December 2018. [Google Scholar]
- Yoo, J.H.; Jang, J.S.; Kwon, J.K.; Kim, H.C.; Song, D.W.; Jung, S.Y. Demonstration of vehicular visible light communication based on LED headlamp. Int. J. Automot. Technol. 2016, 17, 347–352. [Google Scholar] [CrossRef]
- Stepniak, G.; Schüppert, M.; Bunge, C.A. Advanced modulation formats in phosphorous LED VLC links and the impact of blue filtering. J. Light. Technol. 2015, 33, 4413–4423. [Google Scholar] [CrossRef]
- Singh, G.; Srivastava, A.; Bohara, V.A. On feasibility of vlc based car-to-car communication under solar irradiance and fog conditions. In Proceedings of the 1st International Workshop on Communication and Computing in Connected Vehicles and Platooning, New Delhi, India, 29 October 2018. [Google Scholar]
- Singh, G.; Srivastava, A.; Bohara, V.A. Impact of Weather Conditions and Interference on the Performance of VLC based V2V Communication. In Proceedings of the 2019 21st International Conference on Transparent Optical Networks (ICTON), Angers, France, 9–13 July 2019. [Google Scholar]
- Danys, L.; Martinek, R.; Slanina, Z.; Kolarik, J.; Jaros, R. The impact of rain on performance of visible light communication. In Proceedings of the Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2019, Wilga, Poland, 6 November 2019. [Google Scholar]
- Georlette, V.; Bette, S.; Brohez, S.; Pérez-Jiménez, R.; Point, N.; Moeyaert, V. Outdoor visible light communication channel modeling under smoke conditions and analogy with fog conditions. Optics 2020, 1, 259–281. [Google Scholar] [CrossRef]
- Joshi, K.; Roy, N.; Singh, G.; Bohara, V.A.; Srivastava, A. Experimental observations on the feasibility of VLC-based V2X communications under various environmental deterrents. In Proceedings of the 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Goa, India, 16–19 December 2019. [Google Scholar]
- Cui, Z.; Yue, P.; Yi, X.; Li, J. Research on non-uniform dynamic vehicle-mounted VLC with receiver spatial and angular diversity. In Proceedings of the ICC 2019-2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019. [Google Scholar]
- Morales-Céspedes, M.; Quidan, A.A.; Armada, A.G. Experimental evaluation of the reconfigurable photodetector for blind interference alignment in visible light communications. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2–6 September 2019. [Google Scholar]
- Nawaz, T.; Seminara, M.; Caputo, S.; Mucchi, L.; Cataliotti, F.S.; Catani, J. IEEE 802.15. 7-compliant ultra-low latency relaying VLC system for safety-critical ITS. IEEE Trans. Veh. Technol. 2019, 86, 12040–12051. [Google Scholar] [CrossRef]
- You, X.; Zhong, Y.; Chen, J.; Yu, C. Mobile channel estimation based on decision feedback in vehicle-to-infrastructure visible light communication systems. Opt. Commun. 2020, 462, 125261. [Google Scholar] [CrossRef]
- Eldeeb, H.B.; Eso, E.; Uysal, M.; Ghassemlooy, Z.; Zvanovec, S.; Sathian, J. Vehicular visible light communications The impact of taillight radiation pattern. In Proceedings of the 2020 IEEE Photonics Conference (IPC), Vancouver, BC, Canadac, 28 September–1 October 2020. [Google Scholar]
- Al-Kinani, A.; Wang, C.X.; Zhu, Q.; Fu, Y.; Aggoune EH, M.; Talib, A.; Al-Hasaani, N.A. A 3D non-stationary GBSM for vehicular visible light communication MISO channels. IEEE Access 2020, 8, 140333–140347. [Google Scholar] [CrossRef]
- Memedi, A.; Tebruegge, C.; Jahneke, J.; Dressler, F. Impact of vehicle type and headlight characteristics on vehicular VLC performance. In Proceedings of the 2018 IEEE Vehicular Networking Conference (VNC), Taipei, Taiwan, 5–7 December 2018. [Google Scholar]
- Vieira, M.A.; Vieira, M.; Louro, P.; Vieira, P. Redesign of the trajectory within a complex intersection for visible light communication ready connected cars. Opt. Eng. 2020, 59, 097104. [Google Scholar] [CrossRef]
- Singh, G.; Srivastava, A.; Bohara, V.A.; Liu, Z.; Noor-A-Rahim, M.; Ghatak, G. Heterogeneous visible light and radio communication for improving safety message dissemination at road intersection. IEEE Trans. Intell. Transp. Syst. 2022, 23, 17607–17619. [Google Scholar] [CrossRef]
- Vieira, M.A.; Vieira, M.; Louro, P.; Vieira, P. Vehicular visible light communication in a traffic controlled intersection. In Proceedings of the Optical Sensors 2021, Online, 18 April 2021. [Google Scholar]
- Abualhoul, M.Y.; Marouf, M.; Shagdar, O.; Nashashibi, F. Platooning control using visible light communications: A feasibility study. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, Netherlands, 6–9 October 2013. [Google Scholar]
- Schettler, M.; Memedi, A.; Dressler, F. Deeply integrating visible light and radio communication for ultra-high reliable platooning. In Proceedings of the 2019 15th Annual Conference on Wireless On-demand Network Systems and Services (WONS), Wengen, Switzerland, 22–24 January 2019. [Google Scholar]
- Abualhoul, M.Y.; Marouf, M.; Shag, O.; Nashashibi, F. Enhancing the field of view limitation of visible light communication-based platoon. In Proceedings of the 2014 IEEE 6th International Symposium on Wireless Vehicular Communications (WiVeC 2014), Vancouver, BC, Canada, 14–15 September 2014. [Google Scholar]
- Béchadergue, B.; Chassagne, L.; Guan, H. Suitability of visible light communication for platooning applications: An experimental study. In Proceedings of the 2018 Global LIFI Congress (GLC), Paris, France, 8–9 February 2018. [Google Scholar]
- Tseng, H.Y.; Wei, Y.L.; Chen, A.L.; Wu, H.P.; Hsu, H.; Tsai, H.M. Characterizing link asymmetry in vehicle-to-vehicle visible light communications. In Proceedings of the 2015 IEEE Vehicular Networking Conference (VNC), Kyoto, Japan, 16–18 December 2015. [Google Scholar]
- Memedi, A.; Tsai, H.M.; Dressler, F. Impact of realistic light radiation pattern on vehicular visible light communication. In Proceedings of the GLOBECOM 2017-2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017. [Google Scholar]
- Sharda, P.; Reddy, G.S.; Bhatnagar, M.R.; Ghassemlooy, Z. A Comprehensive Modeling of Vehicle-To-Vehicle Based VLC System under Practical Considerations, an Investigation of Performance, and Diversity Property. IEEE Trans. Commun. 2022, 70, 3320–3332. [Google Scholar] [CrossRef]
- Al-Kinani, A.; Wang, C.X.; Zhou, L.; Zhang, W. Optical wireless communication channel measurements and models. IEEE Commun. Surv. Tutor. 2018, 20, 1939–1962. [Google Scholar] [CrossRef]
- Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Der Phys. 1908, 330, 377–445. [Google Scholar] [CrossRef]
- Kim, I.I.; McArthur, B.; Korevaar, E.J. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. In Proceedings of the Optical Wireless Communications III, Boston, MA, USA, 6 February 2001. [Google Scholar]
- Ghassemlooy, Z.; Popoola, W.; Rajbhandari, S. Optical Wireless Communications: System and Channel Modelling with Matlab®; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Mohammed, N.A.; El-Wakeel, A.S.; Malekmohammadi, A.; Aly, M.H. Performance evaluation of FSO link under NRZ-RZ line codes, different weather conditions and receiver types in the presence of pointing errors. Open Electr. Electron. Eng. J. 2012, 6, 28–35. [Google Scholar] [CrossRef]
- Yu, S.H.; Shih, O.; Tsai, H.M.; Wisitpongphan, N.; Roberts, R. Smart automotive lighting for vehicle safety. IEEE Commun. Mag. 2013, 51, 50–59. [Google Scholar] [CrossRef]
- Yamazato, T.; Takai, I.; Okada, H.; Fujii, T.; Yendo, T.; Arai, S.; Kawahito, S. Image-sensor-based visible light communication for automotive applications. IEEE Commun. Mag. 2014, 52, 88–97. [Google Scholar] [CrossRef]
- Goto, Y.; Takai, I.; Yamazato, T.; Okada, H.; Fujii, T.; Kawahito, S.; Arai, S.; Yendo, T.; Kamakura, K. A new automotive VLC system using optical communication image sensor. IEEE Photonics J. 2016, 8, 1–17. [Google Scholar] [CrossRef]
- Chen, A.L.; Wu, H.P.; Wei, Y.L.; Tsai, H.M. Time variation in vehicle-to-vehicle visible light communication channels. In Proceedings of the 2016 IEEE Vehicular Networking Conference (VNC), Columbus, OH, USA, 8–10 December 2016. [Google Scholar]
- Eldeeb, H.B.; Elamassie, M.; Uysal, M. Performance analysis and optimization of cascaded i2v and v2v vlc links. In Proceedings of the 2021 17th International Symposium on Wireless Communication Systems (ISWCS), Berlin, Germany, 6–9 September 2021. [Google Scholar]
- Cailean, A.-M.; Cagneau, B.; Chassagne, L.; Topsu, S.; Alayli, Y.; Dimian, M. Visible light communications cooperative architecture for the intelligent transportation system. In Proceedings of the 2013 IEEE 20th Symposium on Communications and Vehicular Technology in the Benelux (SCVT), Namur, Belgium, 21 November 2013; pp. 1–5. [Google Scholar]
- Refas, S.; Acheli, D.; Yahia, S.; Meraihi, Y.; Ramdane-Cherif, A.; Gabis, A.B.; Eldeeb, H.B. Performance Analysis of Multi-Hop V2V VLC System under Atmospheric Weather Conditions. In Proceedings of the 2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), Hammamet, Tunisia, 28–30 May 2022. [Google Scholar]
- Demir, M.S.; Eldeeb, H.; Uysal, M. Relay-assisted handover technique for vehicular VLC networks. ITU J. Future Evol. Technol. 2022, 3, 11–19. [Google Scholar] [CrossRef]
- Zhan, L.; Zhao, H.; Zhang, W.; Lin, J.; Zhao, X. Performance analysis and node selection of intelligent reflecting surface-aided visible light communication for parallel vehicles. Wireless Commun. Mobile Comput. 2022, 2022, 1462960. [Google Scholar]
- Singh, G.; Srivastava, A.; Bohara, V.A. Visible light and reconfigurable intelligent surfaces for beyond 5G V2X communication networks at road intersections. IEEE Trans. Veh. Technol. 2022, 71, 8137–8151. [Google Scholar] [CrossRef]
- Zhan, L.; Zhao, H.; Zhang, W.; Lin, J. An optimal scheme for the number of mirrors in vehicular visible light communication via mirror array-based intelligent reflecting surfaces. Photonics 2022, 9, 129. [Google Scholar] [CrossRef]
- Eldeeb, H.B.; Naser, S.; Bariah, L.; Muhaidat, S. Energy and Spectral Efficiency Analysis for RIS-Aided V2V-Visible Light Communication. IEEE Commun. Lett. 2023, 27, 2373–2377. [Google Scholar] [CrossRef]
- Sipani, J.; Sharda, P.; Bhatnagar, M.R. Modeling and Design of IRS-Assisted FSO System Under Random Misalignment. IEEE Photonics J. 2023, 15, 7303113. [Google Scholar] [CrossRef]
- Fan, B.; Wu, Y.; He, Z.; Chen, Y.; Quek, T.Q.; Xu, C.-Z. Digital twin empowered mobile edge computing for intelligent vehicular lane-changing. IEEE Netw. 2021, 35, 194–201. [Google Scholar] [CrossRef]
- Wang, Z.; Gupta, R.; Han, K.; Wang, H.; Ganlath, A.; Ammar, N.; Tiwari, P. Mobility digital twin: Concept, architecture, case study, and future challenges. IEEE Internet Things J. 2022, 9, 17452–17467. [Google Scholar] [CrossRef]
- Ding, C.; Ho, I.W.-H. Digital-twin-enabled city-model-aware deep learning for dynamic channel estimation in urban vehicular environments. IEEE Trans. Green Commun. Netw. 2022, 6, 1. [Google Scholar] [CrossRef]
- Wang, Z.; Han, K.; Tiwari, P. Digital twin-assisted cooperative driving at non-signalized intersections. IEEE Trans. Intell. Veh. 2022, 7, 198–209. [Google Scholar] [CrossRef]
- Gong, Y.; Wei, Y.; Feng, Z.; Yu, F.R.; Zhang, Y. Resource allocation for integrated sensing and communication in digital twin enabled internet of vehicles. IEEE Trans. Veh. Technol. 2023, 72, 4510–4524. [Google Scholar] [CrossRef]
- Eldeeb, H.; Naser, S.; Bariah, L.; Muhaidat, S.; Uysal, M. Digital Twin-Assisted OWC: Towards Smart and Autonomous 6G Networks. Authorea Prepr. 2023. [Google Scholar] [CrossRef]
- Aboagye, S.; Ndjiongue, A.R.; Ngatched, T.M.; Dobre, O.A.; Poor, H.V. RIS-assisted visible light communication systems: A tutorial. IEEE Commun. Surv. Tutor. 2022, 25, 251–288. [Google Scholar] [CrossRef]
- Sharma, T.; Chehri, A.; Fortier, P. Reconfigurable intelligent surfaces for 5G and beyond wireless communications: A comprehensive survey. Energies 2021, 14, 8219. [Google Scholar] [CrossRef]
Content Explored | [18] | [19] | [20] | [21] | [22] | [23] | [24] | [25] | [26] | [27] | This Survey | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Superiority of VLC | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |
Architecture | Transmitter | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
Receiver | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |
Channel modeling | √ | √ | √ | √ | √ | √ | √ | |||||
Modulation | OOK, PWM, PPM | √ | √ | √ | √ | √ | √ | √ | √ | |||
OFDM | √ | √ | √ | √ | √ | √ | ||||||
Challenges | LoS | √ | √ | √ | √ | √ | √ | √ | ||||
Noise and Interference | √ | √ | √ | √ | √ | √ | √ | √ | ||||
Mobility | √ | √ | √ | √ | √ | √ | ||||||
VLC Application | Indoor | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |
Positioning | √ | √ | √ | √ | √ | √ | ||||||
Smart cities | √ | √ | ||||||||||
Hospital | √ | √ | √ | √ | ||||||||
Vehicular | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||
Underwater | √ | √ | √ | √ | √ | |||||||
Processing Time | √ | √ | √ | √ | √ | √ | √ | |||||
Computational Complexity | √ | √ | √ | √ | √ | √ | ||||||
Energy efficiency | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
Ref. | Year | Application | Light Source | Channel Method | Observations |
---|---|---|---|---|---|
[72] | 2018 | V2V | Lambertian | GBSM | The authors considered the following:
|
[36] | 2018 | V2V | Asymmetrical | Ray tracing |
|
[75] | 2019 | V2V | Lambertian | Experimental |
|
[39] | 2019 | V2V | Asymmetrical | Ray tracing |
|
[37] | 2019 | V2V | Asymmetrical | Ray tracing |
|
[74] | 2020 | V2I | Asymmetrical | Ray tracing |
|
[76] | 2020 | V2V | Asymmetrical | Ray tracing |
|
[35] | 2020 | I2V | Asymmetrical | Ray tracing |
|
[80] | 2020 | I2V | Lambertian | Experimental |
|
[73] | 2021 | V2V | Asymmetrical | Ray tracing |
|
[81] | 2021 | I2V | Lambertian | Experimental |
|
[83] | 2022 | I2V | Asymmetrical | Ray tracing |
|
Method | Refs. | Scenario | Comments |
---|---|---|---|
LoS | [69] | V2V | Proposed a headlight LoS path loss model |
[74] | V2V | Submitted a taillight LoS loss model | |
[30] | V2V | Presented a LoS path loss model for an asymmetric headlight | |
NLoS | [98,99] | V2V | Described the effects of reflections on road surfaces |
[96] | V2V | Reported on specular reflections on the road surface | |
[97] | V2V | Focused on the reflection from surrounding vehicles |
Weather Condition | Visibility (km) | λ = 785 nm Attenuation (dB/km) | λ = 850 nm Attenuation (dB/km) | λ = 1550 nm Attenuation (dB/km) |
---|---|---|---|---|
Clear air | 23 | 0.5 | 0.4 | 0.1 |
Haze | 2 | 6.7 | 6.4 | 4.2 |
Light fog | 0.8 | 19.1 | 18.6 | 15.5 |
Moderate fog | 0.6 | 27.3 | 27 | 25.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Hasnawi, R.; Marghescu, I. A Survey of Vehicular VLC Methodologies. Sensors 2024, 24, 598. https://doi.org/10.3390/s24020598
Al Hasnawi R, Marghescu I. A Survey of Vehicular VLC Methodologies. Sensors. 2024; 24(2):598. https://doi.org/10.3390/s24020598
Chicago/Turabian StyleAl Hasnawi, Rasha, and Ion Marghescu. 2024. "A Survey of Vehicular VLC Methodologies" Sensors 24, no. 2: 598. https://doi.org/10.3390/s24020598
APA StyleAl Hasnawi, R., & Marghescu, I. (2024). A Survey of Vehicular VLC Methodologies. Sensors, 24(2), 598. https://doi.org/10.3390/s24020598