RTK+OSNMA Positioning for Road Applications: An Experimental Performance Analysis in Finland
Abstract
:1. Introduction
2. Operational Scenarios
2.1. Environments
2.2. Equipment
- A Propak6 receiver, which was used to collect the GNSS observables together with the readings from a tactical grade inertial measurement unit (IMU) for the computation of the ground truth.
- A Septentrio Mosaic X5 receiver with OSNMA configured in strict mode. This receiver was part of an Ardusimple board with a 4G Networked Transport of RTCM via Internet Protocol (NTRIP) module that was directly retrieving the Radio Technical Comission for Maritime Services (RTCM) messages for RTK positioning from FINPOS, the state owned Finnish positioning services provider [41]. The position of this receiver was recorded in a (control) laptop.
- Another X5 receiver with OSNMA off. This receiver was mounted in a development kit from Septentrio, which itself was connected to the control laptop via USB. The RTCM messages were retrieved using the X5’s NTRIP client connecting via the control laptop that was connected to the Internet using a mobile phone (represented by an antenna in the figure).
3. Methods
4. Results
- When not using OSNMA, changing from open sky to urban environments significantly decreased the proportion of RTK-fix positions (which roughly halved) in favor of RTK-float and SPP types.
- Using OSNMA in strict mode significantly decreased the availability of RTK-fix solutions with respect to not using it in both environments (from 96.04 to 68.70% in open sky and from 49.71 to 0.05% in urban).
- Turning OSNMA off significantly decreased the horizontal error in open sky and urban environments. In open sky, the 95% error percentile dropped from 0.75 to , and in urban, it dropped from 18.472 to . This is consistent with the increased proportion of RTK-fix positions presented in Table 1.
- The availabilities severely decreased when switching from open sky to urban environment (e.g., from 97.388 to 49.117% for an error less than 30 with OSNMA off). The use of OSNMA in strict mode further decreased the availability in a rather significant manner (to 15.874% following the previous example).
- The average number of satellites used for the position estimation significantly dropped when using OSNMA in strict mode (it roughly halved). As explained before, the main reason is not using the GPS constellation. However, and as already commented in [34], the reliance of OSNMA on satellite cross-authentication can also reduce, to some extent, the availability of authenticated satellites in obstructed environments (not all the visible satellites can be authenticated).
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C-ITS | cooperative intelligent transport systems and services |
E-GNSS | European GNSS |
ENU | east–north–up |
GIA | Glacial Isostatic Adjustment |
GNSS | Global Navigation Satellite System |
ICD | interface control document |
IMU | inertial measurement unit |
KPI | key performance indicator |
LoS | line of sight |
LTU | longitudinal–transversal–up |
NKG | Nordic Geodetic Commission |
NLoS | non line-of-sight |
NMEA | National Marine Electronics Association |
NTRIP | Networked Transport of RTCM via Internet Protocol |
OSNMA | open service navigation message authentication |
PBN | performance-based navigation |
PVT | position, velocity and time |
RTCM | Radio Technical Comission for Maritime Services |
RTK | real-time kinematic |
SPP | single-point positioning |
SW | software |
TTFAF | time to first authenticated fix |
UAS | unmanned aerial systems |
VLL | very low level |
References
- EUSPA. Report on Road User Needs and Requirements, Outcome of the EUSPA User Consultation Platform; Technical Report; EUSPA: Prague, Czech Republic, 2021. [Google Scholar]
- EUSPA. EUSPA EO and GNSS Market Report; 2022/Issue 1, Technical Report; EUSPA: Prague, Czech Republic, 2022. [Google Scholar] [CrossRef]
- Kuutti, S.; Fallah, S.; Katsaros, K.; Dianati, M.; Mccullough, F.; Mouzakitis, A. A Survey of the State-of-the-Art Localization Techniques and Their Potentials for Autonomous Vehicle Applications. IEEE Internet Things J. 2018, 5, 829–846. [Google Scholar] [CrossRef]
- EUSPA. PPP-RTK Market and Technology Report; Technical Report; EUSPA: Prague, Czech Republic, 2019. [Google Scholar]
- Chen, L.; Thombre, S.; Järvinen, K.; Lohan, E.S.; Alén-Savikko, A.; Leppäkoski, H.; Bhuiyan, M.Z.H.; Bu-Pasha, S.; Ferrara, G.N.; Honkala, S.; et al. Robustness, Security and Privacy in Location-Based Services for Future IoT: A Survey. IEEE Access 2017, 5, 8956–8977. [Google Scholar] [CrossRef]
- Thombre, S.; Bhuiyan, M.Z.H.; Eliardsson, P.; Gabrielsson, B.; Pattinson, M.; Dumville, M.; Fryganiotis, D.; Hill, S.; Manikundalam, V.; Pölöskey, M.; et al. GNSS Threat Monitoring and Reporting: Past, Present, and a Proposed Future. J. Navig. 2017, 71, 513–529. [Google Scholar] [CrossRef]
- Bhuiyan, M.Z.; Ferrara, N.; Thombre, S.; Hashemi, A.; Pattinson, M.; Dumville, M.; Alexandersson, M.; Axell, E.; Eliardsson, P.; Pölöskey, M.; et al. H2020 STRIKE3: Standardization of Interference Threat Monitoring and Receiver Testing—Significant Achievements and Impact. In Proceedings of the European Microwave Conference in Central Europe, Prague, Czech Republic, 13–15 May 2019. [Google Scholar]
- Dovis, F. GNSS Interference, Threats, and Countermeasures; Artech House: Norwood, MA, USA, 2015; p. 213. [Google Scholar]
- Zidan, J.; Adegoke, E.I.; Kampert, E.; Birrell, S.A.; Ford, C.R.; Higgins, M.D. GNSS Vulnerabilities and Existing Solutions: A Review of the Literature. IEEE Access 2021, 9, 153960–153976. [Google Scholar] [CrossRef]
- Psiaki, M.; Humphreys, T. Civilian GNSS Spoofing, Detection, and Recovery. In Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications; Wiley-IEEE Press: Hoboken, NJ, USA, 2021; pp. 655–680. [Google Scholar] [CrossRef]
- Fernández-Hernández, I.; Rijmen, V.; Seco-Granados, G.; Simon, J.; Rodríguez, I.; Calle, J.D. A Navigation Message Authentication Proposal for the Galileo Open Service. Navigation 2016, 63, 85–102. [Google Scholar] [CrossRef]
- Margaria, D.; Marucco, G.; Nicola, M. A first-of-a-kind spoofing detection demonstrator exploiting future Galileo E1 OS authentication. In Proceedings of the 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS), Savannah, GA, USA, 11–14 April 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Sarto, C.; Pozzobon, O.; Fantinato, S.; Montagner, S.; Fernández-Hernández, I.; Simon, J.; Calle, J.D.; Díaz, S.C.; Walker, P.; Burkey, D.; et al. Implementation and Testing of OSNMA for Galileo. In Proceedings of the 30th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, OR, USA, 25–29 September 2017; Institute of Navigation: Manassas, VA, USA, 2017. GNSS 2017. [Google Scholar] [CrossRef]
- Hernández, I.F.; Ashur, T.; Rijmen, V.; Sarto, C.; Cancela, S.; Calle, D. Toward an Operational Navigation Message Authentication Service: Proposal and Justification of Additional OSNMA Protocol Features. In Proceedings of the 2019 European Navigation Conference (ENC), Warsaw, Poland, 9–12 April 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Götzelmann, M.; Köller, E.; Viciano-Semper, I.; Oskam, D.; Gkougkas, E.; Simon, J. Galileo Open Service Navigation Message Authentication: Preparation Phase and Drivers for Future Service Provision. NAVIGATION J. Inst. Navig. 2023, 70, navi.572. [Google Scholar] [CrossRef]
- European Union.Galileo Open Service Navigation Message Authentication (OSNMA) Signal-in-Space Interface Control Document (SIS ICD) Issue 1.0. 2021. Available online: https://www.gsc-europa.eu/electronic-library/programme-reference-documents#OSNMA (accessed on 1 December 2023).
- European Union. Galileo Open Service Navigation Message Authentication (OSNMA) Receiver Guidelines for the Test Phase, Issue 1.1. 2022. Available online: https://www.gsc-europa.eu/electronic-library/programme-reference-documents#OSNMA (accessed on 1 December 2023).
- European Union. Galileo Open Service Navigation Message Authentication (OSNMA) Signal-in-Space Interface Control Document (SIS ICD) Issue 1.1. 2023. Available online: https://www.gsc-europa.eu/electronic-library/programme-reference-documents#OSNMA (accessed on 1 December 2023).
- European Union. Galileo Open Service Navigation Message Authentication (OSNMA) Receiver Guidelines, Issue 1.1. 2023. Available online: https://www.gsc-europa.eu/electronic-library/programme-reference-documents#OSNMA (accessed on 1 December 2023).
- Galan, A.; Fernández-Hernández, I.; Cucchi, L.; Seco-Granados, G. OSNMAlib: An Open Python Library for Galileo OSNMA. In Proceedings of the 2022 10th Workshop on Satellite Navigation Technology (NAVITEC), Virtual, 5–7 April 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–12. [Google Scholar] [CrossRef]
- Estevez, D. Galileo-Osnma. 2022. Available online: https://github.com/daniestevez/galileo-osnma (accessed on 1 December 2023).
- osnmaPython. 2023. Available online: https://github.com/astromarc/osnmaPython (accessed on 1 December 2023).
- Hammarberg, T.; García, J.M.V.; Alanko, J.N.; Bhuiyan, M.Z.H. FGI-OSNMA: An Open Source Implementation of Galileo’s Open Service Navigation Message Authentication. In Proceedings of the 36th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2023), Denver, CO, USA, 11–15 September 2023; pp. 3774–3785. [Google Scholar]
- Cancela, S.; Calle, J.D.; Fernández-Hernández, I. CPU consumption analysis of TESLA-based navigation message authentication. In Proceedings of the 2019 European Navigation Conference (ENC), Warsaw, Poland, 9–12 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Motella, B.; Gamba, M.T.; Nicola, M. A Real-time OSNMA-ready Software Receiver. In Proceedings of the 2020 International Technical Meeting of The Institute of Navigation, San Diego, CA, USA, 21–24 January 2020; Institute of Navigation: Manassas, VA, USA, 2020. ITM 2020. [Google Scholar] [CrossRef]
- Gamba, M.T.; Nicola, M.; Motella, B. Galileo OSNMA: An implementation for ARM-based embedded platforms. In Proceedings of the 2020 International Conference on Localization and GNSS (ICL-GNSS), Tampere, Finland, 2–4 June 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Gamba, M.T.; Nicola, M.; Motella, B. Computational Load Analysis of a Galileo OSNMA-Ready Receiver for ARM-Based Embedded Platforms. Sensors 2021, 21, 467. [Google Scholar] [CrossRef] [PubMed]
- Cucchi, L.; Damy, S.; Paonni, M.; Nicola, M.; Gamba, M.T.; Motella, B.; Fernández-Hernández, I. Assessing Galileo OSNMA Under Different User Environments by Means of a Multi-Purpose Test Bench, Including a Software-defined GNSS Receiver. In Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, USA, 20–24 September 2021; Institute of Navigation: Manassas, VA, USA, 2021. GNSS 2021. [Google Scholar] [CrossRef]
- Motella, B.; Nicola, M.; Damy, S. Enhanced GNSS Authentication Based on the Joint CHIMERA/OSNMA Scheme. IEEE Access 2021, 9, 121570–121582. [Google Scholar] [CrossRef]
- Seco-Granados, G.; Gómez-Casco, D.; López-Salcedo, J.A.; Fernández-Hernández, I. Detection of replay attacks to GNSS based on partial correlations and authentication data unpredictability. GPS Solut. 2021, 25, 33. [Google Scholar]
- Cucchi, L.; Damy, S.; Paonni, M.; Nicola, M.; Motella, B. Receiver Testing for the Galileo E1 OSNMA and I/NAV Improvements. In Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), Denver, CO, USA, 19–23 September 2022; pp. 808–819. [Google Scholar]
- Damy, S.; Cucchi, L.; Paonni, M. Impact of OSNMA Configurations, Operations and User’s Strategies on Receiver Performances. In Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), Denver, CO, USA, 19–23 September 2022; pp. 820–827. [Google Scholar]
- Nicola, M.; Motella, B.; Pini, M.; Falletti, E. Galileo OSNMA Public Observation Phase: Signal Testing and Validation. IEEE Access 2022, 10, 27960–27969. [Google Scholar] [CrossRef]
- Hammarberg, T.; Vallet García, J.M.; Alanko, J.N.; Bhuiyan, Z.H. An Experimental Performance Assessment of Galileo OSNMA. In Proceedings of the 2023 International Conference on Localization and GNSS (ICL-GNSS), Castellón, Spain, 6–8 June 2023; IEEE: Piscataway, NJ, USA, 2023. [Google Scholar] [CrossRef]
- ESRIUM Project Web Site. Available online: https://esrium.eu/ (accessed on 1 December 2023).
- Damy, S.; Cucchi, L.; Mennella, A.; Luisi, G.; Paonni, M.; Fernández-Hernández, I. Increasing the Robustness of Drone Operations with Galileo Open Service Navigation Message Authentication (OSNMA). In Proceedings of the 2023 International Conference on Localization and GNSS (ICL-GNSS), Castellón, Spain, 6–8 June 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Dueñas Pedrosa, S.; Fantinato, S.; del Rio, L.G.J.; Lopez, E.; Abia, D.; Marangoni, J.; Molinari, S. Development of a Global Navigation Satellite System Receiver for Specific Category Unmanned Aerial Systems Operations. Eng. Proc. 2023, 54, 52. [Google Scholar] [CrossRef]
- Anderson, J.M.; Carroll, K.L.; DeVilbiss, N.P.; Gillis, J.T.; Hinks, J.C.; O’Hanlon, B.W.; Rushanan, J.J.; Scott, L.; Yazdi, R.A. Chips-Message Robust Authentication (Chimera) for GPS Civilian Signals. In Proceedings of the ION GNSS+, The International Technical Meeting of the Satellite Division of The Institute of Navigation, Portland, OR, USA, 25–29 September 2017; Institute of Navigation: Manassas, VA, USA, 2017. GNSS 2017. [Google Scholar] [CrossRef]
- CSN EN 16803-1, CEN-CENELEC/TC5; Use of GNSS-Based Positioning for Road Intelligent Transport Systems (ITS)—Part 1: Definitions and System Engineering Procedures For the Establishment and Assessment of Performances. Space: Brussels, Belgium, 2016.
- Misra, P.; Enge, P. Global Positioning System: Signals, Measurements, and Performance, 2nd ed.; Ganga-Jamuna Press: Lincoln, MA, USA, 2006. [Google Scholar]
- FINPOS Web Site. Available online: https://www.maanmittauslaitos.fi/en/finpos (accessed on 1 December 2023).
- Häkli, P.; Lidberg, M.; Jivall, L.; Nørbech, T.; Tangen, O.; Weber, M.; Pihlak, P.; Aleksejenko, I.; Paršeliunas, E. The NKG2008 GPS campaign—Final transformation results and a new common Nordic reference frame. J. Geod. Sci. 2016, 6. [Google Scholar] [CrossRef]
- Häkli, P.; Evers, K.; Jivall, L.; Nilsson, T.; Himle, S.; Kollo, K.; Liepiņš, I.; Paršeliūnas, E.; Vestøl, O.; Lidberg, M. NKG2020 transformation: An updated transformation between dynamic and static reference frames in the Nordic and Baltic countries. J. Geod. Sci. 2023, 13, 20220155. [Google Scholar] [CrossRef]
- Peyret, F.; Gilliéron, P.Y. COST TU1302- SaPPART Handbook: Assessment of Positioning Performance in ITS Applications; IFSTTAR: Lyon, France, 2017. [Google Scholar]
- Stern, A.; Kos, A. Positioning Performance Assessment of Geodetic, Automotive, and Smartphone GNSS Receivers in Standardized Road Scenarios. IEEE Access 2018, 6, 41410–41428. [Google Scholar] [CrossRef]
- Bin Ahmad, K.A.; Sahmoudi, M.; Macabiau, C. Characterization of GNSS Receiver Position Errors for User Integrity Monitoring in Urban Environments. In Proceedings of the European Navigation Conference ENC-GNSS, Rotterdam, The Netherlands, 15–17 April 2014. [Google Scholar]
- GSA. Report on the Performance and Level of Integrity for Safety and Liability Critical Multi-Applications; Technical Report; European GNSS Agency (GSA): Prague, Czech Republic, 2015. [Google Scholar]
- Zhu, N.; Marais, J.; Betaille, D.; Berbineau, M. GNSS Position Integrity in Urban Environments: A Review of Literature. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2762–2778. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, C.; Karl, C. Determination of Required Positioning Integrity Parameters for Design of Vehicle Safety Applications. In Proceedings of the International Technical Meeting of the The Institute of Navigation, Reston, VA, USA, 29–1 January 2018; Institute of Navigation: Manassas, VA, USA, 2018. [Google Scholar] [CrossRef]
- Reid, T.G.; Houts, S.E.; Cammarata, R.; Mills, G.; Agarwal, S.; Vora, A.; Pandey, G. Localization Requirements for Autonomous Vehicles. SAE Int. J. Connect. Autom. Veh. 2019, 2, 173–190. [Google Scholar] [CrossRef]
- 5GPPP. 5G Automotive Vision. 5GPPP White Paper. Technical Report, 5GPPP. 2015. Available online: https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Automotive-Vertical-Sectors.pdf (accessed on 1 December 2023).
- Simsky, A.; Mertens, D.; Sleewaegen, J.; Wilde, W. Multipath and Tracking Performance of Galileo Ranging Signals Transmitted by GIOVE-B. In Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), Savannah, GA, USA, 16–19 September 2008. [Google Scholar]
- Luo, X.; Chen, J.; Richter, B. How Galileo benefits high-precision RTK—What to Expect with the Current Constellation. GPS World 2017, 28, 22–28. [Google Scholar]
Open Sky | Urban | |||
---|---|---|---|---|
OSNMA Strict |
No Sol.: SPP: RTK-float: RTK-fix: RTK(float+fix): |
03.89% 08.17% 19.24% 68.70% 87.94% |
No Sol.: SPP: RTK-float: RTK-fix: RTK(float+fix): |
43.73% 37.62% 18.59% 00.05% 18.65% |
OSNMA Off |
No Sol.: SPP: RTK-float: RTK-fix: RTK(float+fix): |
00.18% 01.03% 02.74% 96.04% 98.79% |
No Sol.: SPP: RTK-float: RTK-fix: RTK(float+fix): |
00.03% 26.42% 23.84% 49.71% 73.55% |
Sol. Types | Env. | OSNMA Mode | [m] | Bias [m] | Av. num. sats. | Avail. () [%] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Long. | Trans. | Horiz. | Vert. | 3D | Long. | Trans. | Horiz. | Vert. | = 0.3 | = 0.2 | = 0.1 | ||||
SPP + RTK | Open | Strict | 0.476 | 0.484 | 0.750 | 0.845 | 1.113 | −0.005 | −0.032 | 0.033 | 0.074 | 5.956 | 84.445 | 80.388 | 74.105 |
Off | 0.088 | 0.097 | 0.145 | 0.259 | 0.332 | −0.004 | −0.002 | 0.005 | 0.057 | 11.197 | 97.388 | 96.026 | 92.429 | ||
Urban | Strict | 6.937 | 17.198 | 18.472 | 25.108 | 31.774 | 0.224 | −1.341 | 1.360 | 4.552 | 4.878 | 15.874 | 7.665 | 4.675 | |
Off | 4.380 | 9.588 | 10.197 | 25.711 | 27.362 | 0.356 | 0.492 | 0.608 | 3.882 | 9.678 | 49.117 | 45.964 | 39.630 | ||
RTK | Open | Strict | 0.209 | 0.195 | 0.323 | 0.469 | 0.580 | 0.016 | −0.003 | 0.016 | 0.047 | 5.956 | 83.056 | 79.661 | 73.774 |
Off | 0.075 | 0.082 | 0.121 | 0.244 | 0.284 | 0.002 | 0.002 | 0.003 | 0.058 | 11.168 | 97.314 | 95.999 | 92.411 | ||
Urban | Strict | 0.419 | 0.754 | 0.887 | 2.112 | 2.366 | −0.079 | 0.045 | 0.091 | 0.274 | 4.920 | 14.542 | 7.040 | 4.539 | |
Off | 1.162 | 1.904 | 2.308 | 3.706 | 4.908 | 0.035 | −0.055 | 0.065 | 1.292 | 8.601 | 48.682 | 45.665 | 39.467 | ||
RTK (fix) | Open | Strict | 0.048 | 0.069 | 0.089 | 0.170 | 0.182 | 0.004 | 0.007 | 0.008 | 0.035 | 6.096 | 68.218 | 67.988 | 66.038 |
Off | 0.059 | 0.068 | 0.099 | 0.201 | 0.221 | 0.004 | −0.000 | 0.004 | 0.059 | 11.286 | 95.401 | 94.389 | 91.344 | ||
Urban | Strict | 0.029 | 0.020 | 0.035 | 0.104 | 0.109 | −0.019 | 0.006 | 0.020 | 0.085 | 5.500 | 0.054 | 0.054 | 0.054 | |
Off | 0.307 | 0.453 | 0.651 | 1.751 | 1.892 | −0.030 | −0.023 | 0.038 | 0.326 | 9.606 | 42.457 | 41.044 | 37.157 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallet García, J.M.; Bhuiyan, M.Z.H. RTK+OSNMA Positioning for Road Applications: An Experimental Performance Analysis in Finland. Sensors 2024, 24, 621. https://doi.org/10.3390/s24020621
Vallet García JM, Bhuiyan MZH. RTK+OSNMA Positioning for Road Applications: An Experimental Performance Analysis in Finland. Sensors. 2024; 24(2):621. https://doi.org/10.3390/s24020621
Chicago/Turabian StyleVallet García, José M., and M. Zahidul H. Bhuiyan. 2024. "RTK+OSNMA Positioning for Road Applications: An Experimental Performance Analysis in Finland" Sensors 24, no. 2: 621. https://doi.org/10.3390/s24020621
APA StyleVallet García, J. M., & Bhuiyan, M. Z. H. (2024). RTK+OSNMA Positioning for Road Applications: An Experimental Performance Analysis in Finland. Sensors, 24(2), 621. https://doi.org/10.3390/s24020621