Deployment of Constellation with Different Inclinations Using the Nodal Precession and Thrust
Abstract
:1. Introduction
2. Problem Formulation
2.1. Effects of J2 Perturbation
2.2. Equations of Motion for Continuous Thrust
2.3. Velocity Increment Required to Change the Orbit Elements
3. Multi-Satellite Multiplane Deployment Strategy
3.1. Strategy of RAAN Separation
3.2. Inclination Boundary with Impulse Thrust
3.3. Inclination Boundary with Continuous Thrust
4. Simulation Verification
4.1. Multi-Satellite Multiplane Deployment
4.2. Low Inclination
4.3. Medium Inclination
4.4. High Inclination
5. Conclusions
- Due to the effect of integration, the velocity increment required for continuous thrust to change orbit elements is different from the velocity increment required for impulse thrust, and the impact is different for different orbit elements;
- In the case of impulse thrust, there are orbital inclination boundaries that distinguish between high and medium-low inclinations. For the medium-low inclination constellations, it is more efficient to control the semi-major axis in orbit to achieve RAAN separation; for the high angle constellations, controlling the inclination is more efficient to achieve RAAN separation;
- In the case of continuous thrust, there exist inclination boundaries distinguishing between high, medium, and low inclinations. For low inclination, it is more efficient to apply thrust directly to change the RAAN. For medium inclination, controlling the semi-major axis to achieve RAAN separation is more efficient. For high inclination, the efficiency of RAAN separation is higher by controlling the inclination;
- In constellation deployment missions, controlling orbit elements is no longer the only viable option to achieve RAAN separation. The use of continuous thrust to directly change the RAAN at small inclinations saves both time and energy.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, K.; El-Mowafy, A. Proposed Orbital Products for Positioning Using Mega-Constellation LEO Satellites. Sensors 2020, 20, 5806. [Google Scholar] [CrossRef] [PubMed]
- Budianto, I.A.; Olds, J.R. Design and deployment of a satellite constellation using collaborative optimization. J. Spacecr. Rockets 2004, 41, 956–963. [Google Scholar] [CrossRef]
- Buzzi, P.G.; Selva, D.; Hitomi, N.; Blackwell, W.J. Assessment of constellation designs for earth observation: Application to the TROPICS mission. Acta Astronaut. 2019, 161, 166–182. [Google Scholar] [CrossRef]
- Bartolomé, J.P.; Maufroid, X.; Hernández, I.F.; López Salcedo, J.A.; Granados, G.S. Overview of Galileo System. In GALILEO Positioning Technology Signals and Communication Technology; Nurmi, J., Lohan, E.S., Sand, S., Hurskainen, H., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 9–33. [Google Scholar] [CrossRef]
- Jia, L.; Zhang, Y. Cost Estimation Model for Mega-Constellation Deployment Missions. IEEE Access 2021, 9, 156778–156788. [Google Scholar] [CrossRef]
- Bainum, P.M.; Strong, A.; Tan, Z.; Capó-Lugo, P.A. Techniques for deploying elliptically orbiting constellations in along-track formation. Acta Astronaut. 2005, 57, 685–697. [Google Scholar] [CrossRef]
- Carlo, M.; Di Ricciardi, L.; Vasile, M. Multi-objective optimisation of constellation deployment using low-thrust propulsion. In AIAA/AAS Astrodynamics Specialist Conference; Aerospace Research Central: Reston, VA, USA, 2016; pp. 1–16. [Google Scholar] [CrossRef]
- Lee, H.W.; Jakob, P.C.; Ho, K.; Shimizu, S.; Yoshikawa, S. Optimization of satellite constellation deployment strategy considering uncertain areas of interest. Acta Astronaut. 2018, 153, 213–228. [Google Scholar] [CrossRef]
- Wijnen, M.; Correyero Plaza, S.; Pérez Grande, D.; de Saavedra, B.; Villegas Prado, D. ATHENA a modular, customizable electrospray thruster for pico-, nano- and micro-satellites. In Proceedings of the International Electric Propulsion Conference (IEPC), Cambridge, MA, USA, 19–23 June 2022. [Google Scholar]
- Grimaud, L.; Krejci, D.; Seifert, B. The IFM Micro FEEP thruster: A modular design for smallsat propulsion. In Proceedings of the International Electric Propulsion Conference (IEPC), Vienna, Austria, 15–20 September 2019; Available online: https://electricrocket.org/2019/675.pdf (accessed on 11 December 2023).
- Fong, C.J.; Shiau, W.T.; Lin, C.T.; Kuo, T.C.; Chu, N.H.; Yang, S.K.; Yen, N.L.; Chen, S.S.; Kuo, Y.H.; Liou, Y.A.; et al. Constellation deployment for the FORMOSAT-3/COSMIC mission. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3367–3379. [Google Scholar] [CrossRef]
- King, J.A.; Beidleman, N.J. Method and Apparatus for Deploying a Satellite Network. U.S. Patent 5,199,672, 6 April 1993. [Google Scholar]
- Crisp, N.H.; Smith, K.; Hollingsworth, P. Launch and deployment of distributed small satellite systems. Acta Astronaut. 2015, 114, 65–78. [Google Scholar] [CrossRef]
- Gomez Jenkins, M.; Krejci, D.; Lozano, P. CubeSat constellation management using Ionic Liquid Electrospray Propulsion. Acta Astronaut. 2018, 151, 243–252. [Google Scholar] [CrossRef]
- Leppinen, H. Deploying a single-launch nanosatellite constellation to several orbital planes using drag maneuvers. Acta Astronaut. 2016, 121, 23–28. [Google Scholar] [CrossRef]
- Yang, H.; Jiang, Y.; Baoyin, H. Fuel efficient control strategy for constellation orbital deployment. Aircr. Eng. Aerosp. Technol. 2016, 88, 159–167. [Google Scholar] [CrossRef]
- McGrath, C.N.; Macdonald, M. General perturbation method for satellite constellation deployment using nodal precession. J. Guid. Control. Dyn. 2020, 43, 814–824. [Google Scholar] [CrossRef]
- Di Pasquale, G.; Sanjurjo-Rivo, M.; Pérez Grande, D. Optimization of constellation deployment using on-board propulsion and Earth nodal regression. Adv. Space Res. 2022, 70, 3281. [Google Scholar] [CrossRef]
- Zhang, Y. Satellite Constellation Theory and Design; Science Press: Beijing, China, 2008. [Google Scholar]
- Hang, G.R.; Li, S.N.; Kang, X.L.; Jin, Y.Z.; Sun, W.X. Current Status and Future Prospects of Hall Electric Propulsion Space Applications. Propuls. Technol. 2023, 44, 28–41. [Google Scholar]
- Tirila, V.-G.; Demairé, A.; Ryan, C.N. Review of Alternative Propellants in Hall Thrusters. Acta Astronaut. 2023, 212, 284–306. [Google Scholar] [CrossRef]
- Vallado, D.A. Fundamentals of Astrodynamics and Applications, 4th ed.; Microcosm Press: Portland, OR, USA, 2013. [Google Scholar]
- Bakhtiari, M.; Abbasali, E.; Danesh, K. Minimum Cost Perturbed Multi-impulsive Maneuver Methodology to Accomplish an Optimal Deployment Scheduling for a Satellite Constellation. J. Astronaut. Sci. 2023, 70, 18. [Google Scholar] [CrossRef]
- Ruggiero, A.; Pergola, P.; Marcuccio, S.; Andrenucci, M. Low-Thrust Maneuvers for the Efficient Correction of Orbital Elements. In Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, 11–15 September 2011; IEPC-2011-102. Available online: https://api.semanticscholar.org/CorpusID:29040684 (accessed on 11 December 2023).
- Conway, B.A. Spacecraft Trajectory Optimization; Cambridge University Press: Cambridge, UK, 2010; pp. 112–138. ISBN 978-0-521-51850-5. [Google Scholar]
- Zhao, S.; Tao, X.; Li, Z. Initial Identification of Thrust and Orbit Elements for Continuous Thrust Spacecraft in Circular Orbit. Aerospace 2023, 10, 1012. [Google Scholar] [CrossRef]
Perturbation | Models and Values |
---|---|
Three-body gravity | Sun, Moon and Major Planets: JPL DE405 |
Tides | Solid Tides: IERS Conventions 2003 |
Non-spherical gravitational field | Gravity Modelling: EGM2008 Degree: 21; Order: 21 |
Relativity | IERS Conventions 2003 |
Solar pressure | Shadow Models: Dual Cone Optical Pressure Coefficient:1.00 Surface-to-Mass Ratio: 0.02 m2/kg |
Atmospheric drag | Density Model: Jacchia-Roberts Drag coefficient: 2.20 Surface-to-mass ratio: 0.02 m2/kg |
Simulation Parameters | Parameter Value |
---|---|
Target orbit height (km) | 550 |
Number of target orbit planes | 3 |
RAAN separation (°) | 10 |
Mass of the satellite (kg) | 500 |
Thruster thrust (mN) | 50 |
Step | Operation | Time (Days) |
---|---|---|
Step 1 | After entering the parking orbit, all satellites were divided into three groups, labelled Group 1, Group 2, and Group 3; | T1 = 0 |
Step 2 | Group 1 satellites began maneuvering (towards the target orbit); | T1 = 0 |
Step 3 | Group 2 satellites began maneuvering (towards the target orbit); | T2 = 12.41 |
Step 4 | Group 1 satellites reach the target orbit; | T3 = 12.97 |
Step 5 | Group 3 satellites began maneuvering (towards the target orbit); | T4 = 24.82 |
Step 6 | Group 2 satellites reach the target orbit; | T5 = 25.38 |
Step 7 | Group 3 satellites reached the target orbit and deployment was completed. | T6 = 37.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Zhu, Q.; Tao, X.; Zhang, Y. Deployment of Constellation with Different Inclinations Using the Nodal Precession and Thrust. Sensors 2024, 24, 631. https://doi.org/10.3390/s24020631
Zhao S, Zhu Q, Tao X, Zhang Y. Deployment of Constellation with Different Inclinations Using the Nodal Precession and Thrust. Sensors. 2024; 24(2):631. https://doi.org/10.3390/s24020631
Chicago/Turabian StyleZhao, Shuailong, Qinyu Zhu, Xuefeng Tao, and Yasheng Zhang. 2024. "Deployment of Constellation with Different Inclinations Using the Nodal Precession and Thrust" Sensors 24, no. 2: 631. https://doi.org/10.3390/s24020631
APA StyleZhao, S., Zhu, Q., Tao, X., & Zhang, Y. (2024). Deployment of Constellation with Different Inclinations Using the Nodal Precession and Thrust. Sensors, 24(2), 631. https://doi.org/10.3390/s24020631