Camera-Based Net Avoidance Controls of Underwater Robots
Abstract
:1. Introduction
2. Net Avoidance Controls
Algorithm 1 Net avoidance controls |
|
Algorithm 2 |
|
Discussion
3. MATLAB Simulations
3.1. Net Detection Experiments
3.2. Net Avoidance Simulations
3.2.1. The Effect of Changing the Maximum Sensing Range D
3.2.2. The Effect of Changing the Detection Probability
3.2.3. The Effect of Using the Strategy for Getting Out of the Stuck Situation
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sahoo, A.; Dwivedy, S.K.; Robi, P. Advancements in the field of autonomous underwater vehicle. Ocean. Eng. 2019, 181, 145–160. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, Y.; Liu, H.; Zhang, Y.; Sha, Q. Design and Implementation of Autonomous Underwater Vehicle Simulation System Based on MOOS and Unreal Engine. Electronics 2023, 12, 3107. [Google Scholar] [CrossRef]
- Ribas, D.; Ridao, P.; Domingo Tardos, J.; Neira, J. Underwater SLAM in a marina environment. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 1455–1460. [Google Scholar]
- Allotta, B.; Costanzi, R.; Fanelli, F.; Monni, N.; Paolucci, L.; Ridolfi, A. Sea currents estimation during AUV navigation using Unscented Kalman Filter. IFAC PapersOnLine 2017, 50, 13668–13673. [Google Scholar] [CrossRef]
- Kim, J. Underwater surface scan utilizing an unmanned underwater vehicle with sampled range information. Ocean. Eng. 2020, 207, 107345. [Google Scholar] [CrossRef]
- Machado Jorge, V.A.; de Cerqueira Gava, P.D.; Belchior de França Silva, J.R.; Mancilha, T.M.; Vieira, W.; Adabo, G.J.; Nascimento, C.L. Analytical Approach to Sampling Estimation of Underwater Tunnels Using Mechanical Profiling Sonars. Sensors 2021, 21, 1900. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. Underwater guidance of distributed autonomous underwater vehicles using one leader. Asian J. Control 2023, 25, 2641–2654. [Google Scholar] [CrossRef]
- Goheen, K.; Jefferys, E. The application of alternative modelling techniques to ROV dynamics. In Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA, 13–18 May 1990; Volume 2, pp. 1302–1309. [Google Scholar]
- Mai, C.; Liniger, J.; Jensen, A.L.; Sørensen, H.; Pedersen, S. Experimental Investigation of Non-contact 3D Sensors for Marine-growth Cleaning Operations. In Proceedings of the 2022 IEEE 5th International Conference on Image Processing Applications and Systems (IPAS), Genova, Italy, 5–7 December 2022; Volume 5, pp. 1–6. [Google Scholar]
- O’Byrne, M.; Schoefs, F.; Pakrashi, V.; Ghosh, B. An underwater lighting and turbidity image repository for analysing the performance of image-based non-destructive techniques. Struct. Infrastruct. Eng. 2018, 14, 104–123. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Dai, F.; Bu, Y.; Wang, H. Monocular vision-based underwater object detection. Sensors 2017, 17, 1784. [Google Scholar] [CrossRef]
- Foresti, G.L.; Gentili, S. A vision based system for object detection in underwater images. Int. J. Pattern Recognit. Artif. Intell. 2000, 14, 167–188. [Google Scholar] [CrossRef]
- Rizzini, D.L.; Kallasi, F.; Oleari, F.; Caselli, S. Investigation of vision-based underwater object detection with multiple datasets. Int. J. Adv. Robot. Syst. 2015, 12, 77. [Google Scholar] [CrossRef]
- Hovem, J. Underwater acoustics: Propagation, devices and systems. J. Electroceram. 2007, 19, 339–347. [Google Scholar] [CrossRef]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems; Springer: Berlin/Heidelberg, Germany, 2015; Volume 28. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Karthi, M.; Muthulakshmi, V.; Priscilla, R.; Praveen, P.; Vanisri, K. Evolution of YOLO-V5 Algorithm for Object Detection: Automated Detection of Library Books and Performace validation of Dataset. In Proceedings of the 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), Chennai, India, 24–25 September 2021; pp. 1–6. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Sørensen, F.F.; Mai, C.; Olsen, O.M.; Liniger, J.; Pedersen, S. Commercial Optical and Acoustic Sensor Performances under Varying Turbidity, Illumination, and Target Distances. Sensors 2023, 23, 6575. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, J.; Guy, S.J.; Ming Lin and, D.M. Reciprocal n-Body Collision Avoidance. Robot. Res. Springer Tracts Adv. Robot. 2011, 70, 3–19. [Google Scholar]
- Kosecka, J.; Tomlin, C.; Pappas, G.; Sastry, S. Generation of conflict resolution maneuvers for air traffic management. In Proceedings of the International Conference of Intelligent Robotic Systems, Grenoble, France, 7–11 September 1997; pp. 1598–1603. [Google Scholar]
- Chakravarthy, A.; Ghose, D. Obstacle avoidance in a dynamic environment: A collision cone approach. IEEE Trans. Syst. Man Cybern. 1998, 28, 562–574. [Google Scholar] [CrossRef]
- Lalish, E.; Morgansen, K. Distributed reactive collision avoidance. Auton. Robot. 2012, 32, 207–226. [Google Scholar] [CrossRef]
- Wang, D.; Wang, P.; Zhang, X.; Guo, X.; Shu, Y.; Tian, X. An obstacle avoidance strategy for the wave glider based on the improved artificial potential field and collision prediction model. Ocean. Eng. 2020, 206, 107356. [Google Scholar] [CrossRef]
- Mohammad, S.; Rostami, H.; Sangaiah, A.K.; Wang, J.; Liu, X. Obstacle avoidance of mobile robots using modified artificial potential field algorithm. EURASIP J. Wirel. Commun. Netw. 2019, 70, 1–19. [Google Scholar]
- Lalish, E. Distributed Reactive Collision Avoidance; University of Washington: Washington, DC, USA, 2009. [Google Scholar]
- Sunkara, V.; Chakravarthy, A. Collision avoidance laws for objects with arbitrary shapes. In Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016; pp. 5158–5164. [Google Scholar]
- Leonard, J.; Savvaris, A.; Tsourdos, A. Distributed reactive collision avoidance for a swarm of quadrotors. Proc. Inst. Mech. Eng. Part J. Aerosp. Eng. 2017, 231, 1035–1055. [Google Scholar] [CrossRef]
- Kim, J. Reactive Control for Collision Evasion with Extended Obstacles. Sensors 2022, 22, 5478. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Bewley, T.R.; Kuester, F. Point Cloud-Based Target-Oriented 3D Path Planning for UAVs. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 1–4 September 2020; pp. 790–798. [Google Scholar]
- Roelofsen, S.; Martinoli, A.; Gillet, D. 3D collision avoidance algorithm for Unmanned Aerial Vehicles with limited field of view constraints. In Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016; pp. 2555–2560. [Google Scholar]
- Gu, S.; Guo, S.; Zheng, L. A highly stable and efficient spherical underwater robot with hybrid propulsion devices. Auton. Robot 2020, 44, 759–771. [Google Scholar] [CrossRef]
- Yue, C.; Guo, S.; Shi, L. Hydrodynamic Analysis of the Spherical Underwater Robot SUR-II. Int. J. Adv. Robot. Syst. 2013, 10, 247. [Google Scholar] [CrossRef]
- Li, C.; Guo, S.; Guo, J. Tracking Control in Presence of Obstacles and Uncertainties for Bioinspired Spherical Underwater Robots. J. Bionic Eng. 2023, 20, 323–337. [Google Scholar] [CrossRef]
- Kim, J. Leader-Based Flocking of Multiple Swarm Robots in Underwater Environments. Sensors 2023, 23, 5305. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhu, H.; Li, M.; You, S. A Review of Visual-Inertial Simultaneous Localization and Mapping from Filtering-Based and Optimization-Based Perspectives. Robotics 2018, 7, 45. [Google Scholar] [CrossRef]
- Lynen, S.; Zeisl, B.; Aiger, D.; Bosse, M.; Hesch, J.; Pollefeys, M.; Siegwart, R.; Sattler, T. Large-scale, real-time visual–inertial localization revisited. Int. J. Robot. Res. 2020, 39, 1061–1084. [Google Scholar] [CrossRef]
- Strasdat, H.; Montiel, J.M.M.; Davison, A.J. Real-time monocular SLAM: Why filter? In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 2657–2664. [Google Scholar]
- Eade, E.; Drummond, T. Scalable Monocular SLAM. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006; Volume 1, pp. 469–476. [Google Scholar]
- Mur-Artal, R.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef]
- Ji, M.; Egerstedt, M. Distributed Coordination Control of Multi-Agent Systems While Preserving Connectedness. IEEE Trans. Robot. 2007, 23, 693–703. [Google Scholar] [CrossRef]
- Garcia de Marina, H.; Cao, M.; Jayawardhana, B. Controlling Rigid Formations of Mobile Agents Under Inconsistent Measurements. IEEE Trans. Robot. 2015, 31, 31–39. [Google Scholar] [CrossRef]
- Krick, L.; Broucke, M.E.; Francis, B.A. Stabilization of infinitesimally rigid formations of multi-robot networks. Int. J. Control 2009, 82, 423–439. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S. Motion control of multiple autonomous ships to approach a target without being detected. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418763184. [Google Scholar] [CrossRef]
- Luo, S.; Kim, J.; Parasuraman, R.; Bae, J.H.; Matson, E.T.; Min, B.C. Multi-robot rendezvous based on bearing-aided hierarchical tracking of network topology. Ad Hoc Netw. 2019, 86, 131–143. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, F. A Speeding-Up and Slowing-Down Strategy for Distributed Source Seeking With Robustness Analysis. IEEE Trans. Control Netw. Syst. 2016, 3, 231–240. [Google Scholar] [CrossRef]
- Al-Abri, S.; Wu, W.; Zhang, F. A Gradient-Free Three-Dimensional Source Seeking Strategy With Robustness Analysis. IEEE Trans. Autom. Control 2019, 64, 3439–3446. [Google Scholar] [CrossRef]
- Kim, J. Three-dimensional multi-robot control to chase a target while not being observed. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419829667. [Google Scholar] [CrossRef]
- Jian, M.; Liu, X.; Luo, H.; Lu, X.; Yu, H.; Dong, J. Underwater image processing and analysis: A review. Signal Process. Image Commun. 2021, 91, 116088. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [Google Scholar] [CrossRef]
- Lavalle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Ikeda, T.; Mita, T.; Yamakita, M. Formation Control of Autonomous Underwater Vehicles. IFAC Proc. Vol. 2005, 38, 666–671. [Google Scholar] [CrossRef]
- Cui, R.; Xu, D.; Yan, W. Formation Control of Autonomous Underwater Vehicles under Fixed Topology. In Proceedings of the 2007 IEEE International Conference on Control and Automation, Guangzhou, China, 30 May–1 June 2007; pp. 2913–2918. [Google Scholar]
- Li, L.; Li, Y.; Zhang, Y.; Xu, G.; Zeng, J.; Feng, X. Formation Control of Multiple Autonomous Underwater Vehicles under Communication Delay, Packet Discreteness and Dropout. J. Mar. Sci. Eng. 2022, 10, 920. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J. Camera-Based Net Avoidance Controls of Underwater Robots. Sensors 2024, 24, 674. https://doi.org/10.3390/s24020674
Kim J. Camera-Based Net Avoidance Controls of Underwater Robots. Sensors. 2024; 24(2):674. https://doi.org/10.3390/s24020674
Chicago/Turabian StyleKim, Jonghoek. 2024. "Camera-Based Net Avoidance Controls of Underwater Robots" Sensors 24, no. 2: 674. https://doi.org/10.3390/s24020674
APA StyleKim, J. (2024). Camera-Based Net Avoidance Controls of Underwater Robots. Sensors, 24(2), 674. https://doi.org/10.3390/s24020674