Active Disturbance Rejection Control via Neural Networks for a Lower-Limb Exoskeleton
Abstract
:1. Introduction
- A control scheme based on an ANN is proposed to estimate the external disturbances, the nonlinear exoskeleton model, and the human behavior. Furthermore, a feedback linearization controller is proposed to perform a smooth tracking trajectory to prevent injuries.
- The stability and robustness of the proposed approach are obtained using Lyapunov stability analysis.
- A rejection disturbance strategy ensures the feasibility and safety of the robot during walking rehabilitation, dealing with disturbances such as vibrations of the treadmill.
2. Exoskeleton Dynamic Model and Properties
2.1. System Description and Modeling
2.2. Artificial Neural Network Structure for the LLE
3. ANN-Based Control Design
3.1. ANN-Based Control Design
3.2. Stability Analysis
3.3. Control Gains Tuning
Algorithm 1 Pseudocode of neural network algorithm |
|
4. Numerical and Experimental Results
4.1. Numerical Results
4.2. Experimental Setup
4.3. Experimental Results
- In test A, the exoskeleton is used to follow the desired trajectory for gait rehabilitation (https://youtu.be/g3pz0G4x_aw accessed on 20 September 2024).
- In test B, the exoskeleton with a healthy user is tested to validate the robustness of the controller considering the user as an unknown uncertainty (https://youtu.be/r4ciHMjtOJo accessed on 20 September 2024.
- In test C, external disturbances are added to the system and are rejected by the controller, so the robot follows the desired trajectory (https://youtu.be/kjzzASk1yII accessed on 20 September 2024).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, T.; Kim, I.; Baek, Y.S. Design of a 2DoF Ankle Exoskeleton with a Polycentric Structure and a Bi-Directional Tendon-Driven Actuator Controlled Using a PID Neural Network. Actuators 2021, 10, 9. [Google Scholar] [CrossRef]
- Dao, Q.T.; Dinh, V.V.; Trinh, M.C.; Tran, V.C.; Nguyen, V.L.; Duong, M.D.; Bui, N.T. Nonlinear Extended Observer-Based ADRC for a Lower-Limb PAM-Based Exoskeleton. Actuators 2022, 11, 369. [Google Scholar] [CrossRef]
- Ran, M.; Li, J.; Xie, L. A new extended state observer for uncertain nonlinear systems. Automatica 2021, 131, 109772. [Google Scholar] [CrossRef]
- Fareh, R.; Khadraoui, S.; Abdallah, M.Y.; Baziyad, M.; Bettayeb, M. Active disturbance rejection control for robotic systems: A review. Mechatronics 2021, 80, 102671. [Google Scholar] [CrossRef]
- Aole, S.; Elamvazuthi, I.; Waghmare, L.; Patre, B.; Meriaudeau, F. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton. Sensors 2020, 20, 3681. [Google Scholar] [CrossRef]
- Chen, C.F.; Du, Z.J.; He, L.; Wang, J.Q.; Wu, D.M.; Dong, W. Active Disturbance Rejection with Fast Terminal Sliding Mode Control for a Lower Limb Exoskeleton in Swing Phase. IEEE Access 2019, 7, 72343–72357. [Google Scholar] [CrossRef]
- Awad, N.; Humaidi, A.; Sabah, A. Fractional proportional derivative-based active disturbance rejection control of knee exoskeleton device for rehabilitation care. Indones. J. Electr. Eng. Comput. Sci. 2022, 28, 1405–1413. [Google Scholar] [CrossRef]
- Guerrero-Castellanos, J.; Rifaï, H.; Arnez-Paniagua, V.; Linares-Flores, J.; Saynes-Torres, L.; Mohammed, S. Robust Active Disturbance Rejection Control via Control Lyapunov Functions: Application to Actuated-Ankle–Foot-Orthosis. Control Eng. Pract. 2018, 80, 49–60. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, X.; Zhang, J.; Wang, T. Angle tracking control for double-joint dexterous hand systems based on a piecewise extended state observer. Control Eng. Pract. 2021, 110, 104754. [Google Scholar] [CrossRef]
- San-Miguel, A.; Puig, V.; Alenyà, G. Disturbance observer-based LPV feedback control of a N-DoF robotic manipulator including compliance through gain shifting. Control Eng. Pract. 2021, 115, 104887. [Google Scholar] [CrossRef]
- Aole, S.; Elamvazuthi, I.; Waghmare, L.; Patre, B.; Bhaskarwar, T.; Meriaudeau, F.; Su, S. Active Disturbance Rejection Control Based Sinusoidal Trajectory Tracking for an Upper Limb Robotic Rehabilitation Exoskeleton. Appl. Sci. 2022, 12, 1287. [Google Scholar] [CrossRef]
- Li, H.; Cheng, L.; Li, Z.; Xue, W. Active Disturbance Rejection Control for a Fluid-Driven Hand Rehabilitation Device. IEEE/ASME Trans. Mechatron. 2021, 26, 841–853. [Google Scholar] [CrossRef]
- Hagan, M.T.; Demuth, H.B.; Beale, M.H.; Jesús, O.D. Neural Network Design, 2nd ed.; Martin Hagan, Oklahoma UE; 2014; Available online: https://books.google.com.mx/books?id=4EW9oQEACAAJ (accessed on 29 July 2024).
- Moura Coelho, R.; Gouveia, J.; Botto, M.A.; Krebs, H.I.; Martins, J. Real-time walking gait terrain classification from foot-mounted Inertial Measurement Unit using Convolutional Long Short-Term Memory neural network. Expert Syst. Appl. 2022, 203, 117306. [Google Scholar] [CrossRef]
- Fuentes-Alvarez, R.; Hernandez, J.H.; Matehuala-Moran, I.; Alfaro-Ponce, M.; Lopez-Gutierrez, R.; Salazar, S.; Lozano, R. Assistive robotic exoskeleton using recurrent neural networks for decision taking for the robust trajectory tracking. Expert Syst. Appl. 2022, 193, 116482. [Google Scholar] [CrossRef]
- Yu, W.; Rosen, J. Neural PID Control of Robot Manipulators with Application to an Upper Limb Exoskeleton. IEEE Trans. Cybern. 2013, 43, 673–684. [Google Scholar] [CrossRef]
- Liu, G.; Sun, N.; Liang, D.; Chen, Y.; Yang, T.; Fang, Y. Neural network-based adaptive command filtering control for pneumatic artificial muscle robots with input uncertainties. Control Eng. Pract. 2022, 118, 104960. [Google Scholar] [CrossRef]
- Aly, A.; The Vu, M.; El-Sousy, F.; Hsia, K.H.; Alotaibi, A.; Mousa, G.; Le, D.N.; Mobayen, S. Adaptive Neural Network-Based Fixed-Time Tracking Controller for Disabilities Exoskeleton Wheelchair Robotic System. Mathematics 2022, 10, 3853. [Google Scholar] [CrossRef]
- Al-Waeli, K.H.; Ramli, R.; Haris, S.M.; Zulkoffli, Z.B.; Amiri, M.S. Offline ANN-PID Controller Tuning on a Multi-Joints Lower Limb Exoskeleton for Gait Rehabilitation. IEEE Access 2021, 9, 107360–107374. [Google Scholar] [CrossRef]
- Han, S.; Wang, H.; Tian, Y.; Christov, N. Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton. ISA Trans. 2020, 97, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Liu, K.; Wei, Q. Adaptive Neural Network Control of Lower Limb Exoskeleton Robots Using Disturbance Observer. In Proceedings of the 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM), Shenzhen, China, 18–21 December 2020; pp. 246–251. [Google Scholar] [CrossRef]
- Peng, Z.; Luo, R.; Huang, R.; Hu, J.; Shi, K.; Cheng, H.; Ghosh, B.K. Data-Driven Reinforcement Learning for Walking Assistance Control of a Lower Limb Exoskeleton with Hemiplegic Patients. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 9065–9071. [Google Scholar] [CrossRef]
- Rosales-Luengas, Y.; Espinosa-Espejel, K.I.; Lopéz-Gutiérrez, R.; Salazar, S.; Lozano, R. Lower Limb Exoskeleton for Rehabilitation with Flexible Joints and Movement Routines Commanded by Electromyography and Baropodometry Sensors. Sensors 2023, 23, 5252. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. Radial Basis Function (RBF) Neural Network Control for Mechanical Systems; Springer: Berlin/Heidelberg, Germany, 2013; pp. 134–139. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa-Espejel, K.I.; Rosales-Luengas, Y.; Salazar, S.; Lopéz-Gutiérrez, R.; Lozano, R. Active Disturbance Rejection Control via Neural Networks for a Lower-Limb Exoskeleton. Sensors 2024, 24, 6546. https://doi.org/10.3390/s24206546
Espinosa-Espejel KI, Rosales-Luengas Y, Salazar S, Lopéz-Gutiérrez R, Lozano R. Active Disturbance Rejection Control via Neural Networks for a Lower-Limb Exoskeleton. Sensors. 2024; 24(20):6546. https://doi.org/10.3390/s24206546
Chicago/Turabian StyleEspinosa-Espejel, Karina I., Yukio Rosales-Luengas, Sergio Salazar, Ricardo Lopéz-Gutiérrez, and Rogelio Lozano. 2024. "Active Disturbance Rejection Control via Neural Networks for a Lower-Limb Exoskeleton" Sensors 24, no. 20: 6546. https://doi.org/10.3390/s24206546
APA StyleEspinosa-Espejel, K. I., Rosales-Luengas, Y., Salazar, S., Lopéz-Gutiérrez, R., & Lozano, R. (2024). Active Disturbance Rejection Control via Neural Networks for a Lower-Limb Exoskeleton. Sensors, 24(20), 6546. https://doi.org/10.3390/s24206546