DGRO: Doppler Velocity and Gyroscope-Aided Radar Odometry
Abstract
:1. Introduction
- Ego-Velocity Preintegration: By leveraging the radar’s velocity derived from Doppler measurements and directional information from the gyroscope, along with a pre-integration method similar to IMU pre-integration, we obtain a robust estimate of the pose and odometry, which provides a reliable initial estimate for scan-to-submap matching.
- Scan-to-Submap Registration: Before registration, we filter the points using RCS and normal vectors to select more accurate correspondences, and then apply an RCS-weighted ICP algorithm for registration. The factor graph integrates Doppler-IMU pre-integration factors, scan-to-submap registration factors, and loop closure factors, enabling precise positioning even in the absence of scan point clouds for short periods.
- Experimental Validation: Extensive experiments on our platform using five datasets demonstrate the accuracy, robustness, and real-time performance of the proposed method.
2. Related Work
2.1. 4D Radar Odometry
2.2. 4D Radar-IMU Odometry
3. Methodology
3.1. Ego-Velocity Estimation
3.2. Ego-Velocity Preintegration
3.3. Scan to Sub-Map Matching
3.4. Loop Closure Detection
4. Experiments
4.1. Quantitative Evaluation
4.2. Ablation Study
4.3. Registration Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shan, T.; Hsu, L.L.; Chan, Y.K.Y.; Ma, L. Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 January–24 October 2020; pp. 1282–1289. [Google Scholar]
- Zhao, Q.; Yu, X.; Wei, J. LIKO: LiDAR, Inertial, and Kinematic Odometry for Bipedal Robots. arXiv 2024, arXiv:2404.18047. [Google Scholar]
- Pfreundschuh, P.; Probst, T.; Kim, M.K.T.M.; Shen, S. COIN-LIO: Complementary Intensity-Augmented LiDAR Inertial Odometry. arXiv 2023, arXiv:2310.01235. [Google Scholar]
- Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 2018, 34, 1004–1020. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhang, J.; Liu, M. Amos-SLAM: An Anti-Dynamics Two-stage SLAM Approach. arXiv 2023, arXiv:2302.11747. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, Y.D. 4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach. IEEE J. Sel. Top. Signal Process. 2021, 15, 879–891. [Google Scholar] [CrossRef]
- Santra, A.; Nasr, I.; Kim, J. Reinventing radar: The power of 4D sensing. Microw. J. 2018, 61, 22–37. [Google Scholar]
- Lim, H.; Yoon, S.; Kim, T. Orora: Outlier-robust radar odometry. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 5467–5474. [Google Scholar]
- Cen, S.H.; Newman, P. Radar-only ego-motion estimation in difficult settings via graph matching. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 708–715. [Google Scholar]
- Burnett, K.; Schoellig, A.P.; Barfoot, T.D. Do we need to compensate for motion distortion and doppler effects in spinning radar navigation? IEEE Robot. Autom. Lett. 2021, 6, 771–778. [Google Scholar] [CrossRef]
- Zhang, J.; Zhuge, H.; Wu, Z.; Peng, G.; Wen, M.; Liu, Y.; Wang, D. 4DRadarSLAM: A 4D imaging radar SLAM system for large-scale environments based on pose graph optimization. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 8333–8340. [Google Scholar]
- Segal, A.; Haehnel, D.; Thrun, S. Generalized-ICP. In Robotics: Science and Systems; The MIT Press: Seattle, WA, USA, 2009; Volume 2, p. 435. [Google Scholar]
- Doer, C.; Trommer, G.F. An EKF based approach to radar inertial odometry. In Proceedings of the 2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Karlsruhe, Germany, 14–16 September 2020; pp. 108–115. [Google Scholar]
- Wu, X.; Chen, Y.; Li, Z.; Hong, Z.; Hu, L. EFEAR-4D: Ego-Velocity Filtering for Efficient and Accurate 4D radar Odometry. arXiv 2024, arXiv:2405.09780. [Google Scholar] [CrossRef]
- Schubert, E.; Hennig, L.; Schöps, T. DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN. ACM Trans. Database Syst. (TODS) 2017, 42, 1–21. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Chen, W. 4D radar-based pose graph SLAM with ego-velocity pre-integration factor. IEEE Robot. Autom. Lett. 2023, 8, 323–330. [Google Scholar] [CrossRef]
- Forster, C.; Hsu, L.L.; Chan, Y.K.Y.; Dellaert, F. On-manifold preintegration for real-time visual–inertial odometry. IEEE Trans. Robot. 2016, 33, 1–21. [Google Scholar] [CrossRef]
- Bailey, T.; Durrant-Whyte, H.; Thomas, E.G. Consistency of the EKF-SLAM algorithm. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 1631–1636. [Google Scholar]
- Choi, S.; Kim, T.; Yu, W. Performance evaluation of RANSAC family. J. Comput. Vis. 1997, 24, 271–300. [Google Scholar]
- Michalczyk, J.; Jung, R.; Weiss, S. Tightly-coupled EKF-based radar-inertial odometry. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 214–221. [Google Scholar]
- Zhuang, Y.; Wu, C.; Zhang, J.; Chen, S. 4D IRIOM: 4D Imaging Radar Inertial Odometry and Mapping. IEEE Robot. Autom. Lett. 2023, 8, 1456–1463. [Google Scholar] [CrossRef]
- Kim, G.; Kim, A. Scan context: Egocentric spatial descriptor for place recognition within 3D point cloud map. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4614–4621. [Google Scholar]
- Li, Q.; Huai, J.; Chen, D.; Zhuang, Y. Real-time robot localization based on 2D lidar scan-to-submap matching. In China Satellite Navigation Conference (CSNC 2021); Springer: Singapore, 2021; pp. 414–423. [Google Scholar]
- Sie, E.; Lindner, K.; Kim, C. Radarize: Enhancing Radar SLAM with Generalizable Doppler-Based Odometry. In Proceedings of the 22nd Annual International Conference on Mobile Systems, Applications, and Services, Tokyo, Japan, 3–7 June 2024. [Google Scholar]
- Lim, H.; Lee, L.; Kwon, H. A single correspondence is enough: Robust global registration to avoid degeneracy in urban environments. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 4464–4471. [Google Scholar]
- Kaess, M.; Johannsson, H.; Roberts, R.; Ila, V.; Leonard, J.J.; Dellaert, F. iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree. Int. J. Robot. Res. 2012, 31, 216–235. [Google Scholar] [CrossRef]
- Liu, F.; Su, X.; He, Y.; Luo, F.; Gao, H. IMU Preintegration for Visual-Inertial Odometry Pose Estimation. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 5305–5310. [Google Scholar] [CrossRef]
- Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011. [Google Scholar]
- Wu, T.; Liu, Z.; Zhang, R. Consistency of the SLAM Algorithm with a Kalman Filter. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA), Orlando, FL, USA, 15–19 May 2006; pp. 1308–1313. [Google Scholar]
- Wei, X.; Zhang, X.; Li, Y. Fast-lio2: Fast direct lidar-inertial odometry. IEEE Trans. Robot. 2022, 38, 2053–2073. [Google Scholar]
- Grupp, M. Evo: Python Package for the Evaluation of Odometry and SLAM. GitHub. 2017. Available online: https://github.com/MichaelGrupp/evo (accessed on 9 September 2024).
- Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. In Sensor Fusion IV: Control Paradigms and Data Structures; SPIE: Bellingham, WA, USA, 1992; Volume 1611. [Google Scholar]
- Magnusson, M.; Lilienthal, A.; Duckett, T. Scan registration for autonomous mining vehicles using 3D-NDT. J. Field Robot. 2007, 24, 803–827. [Google Scholar] [CrossRef]
- Koide, K.; Yoshida, H.; Kato, M.; Matsumoto, Y. Voxelized GICP for fast and accurate 3D point cloud registration. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021. [Google Scholar]
Sequence | Fast-lio2 [30] | Our Odometry | Our SLAM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | (deg/m) | (m) | (%) | (deg/m) | (m) | (%) | (deg/m) | (m) | ||||
1 | 1.83 | 0.0095 | 2.15 | 2.40 | 0.0112 | 4.30 | 2.21 | 0.0110 | 2.23 | |||
2 | - | - | - | 2.13 | 0.0102 | 3.29 | 1.92 | 0.0102 | 1.93 |
Sequence | apdgicp [11] | apdgicp-lc [11] | RCS-icp | RCS-icp + EVP | Our SLAM | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | (deg/m) | (m) | (%) | (deg/m) | (m) | (%) | (deg/m) | (m) | (%) | (deg/m) | (m) | (%) | (deg/m) | (m) | |||||||
cp | 3.57 | 0.0365 | 2.66 | 3.05 | 0.0442 | 2.56 | 3.77 | 0.0382 | 2.73 | 3.02 | 0.0401 | 2.49 | 2.91 | 0.0398 | 2.27 | ||||||
garden | 2.38 | 0.0350 | 4.02 | 2.07 | 0.0390 | 2.38 | 2.32 | 0.0336 | 3.89 | 2.05 | 0.0321 | 3.82 | 2.00 | 0.0301 | 2.27 | ||||||
loop1 | 6.09 | 0.082 | 227.54 | 5.79 | 0.0131 | 84.88 | 7.58 | 0.088 | 251.13 | 3.21 | 0.0088 | 55.23 | 3.05 | 0.0073 | 33.2 | ||||||
Loop2 | 4.09 | 0.0097 | 59.12 | 4.03 | 0.0069 | 43.67 | 4.12 | 0.0102 | 65.38 | 4.01 | 0.0062 | 38.22 | 3.87 | 0.0058 | 26.58 | ||||||
ny1 | 3.52 | 0.0176 | 22.35 | 2.83 | 0.0128 | 12.35 | 3.48 | 0.0168 | 21.28 | 2.75 | 0.0130 | 13.48 | 2.30 | 0.098 | 8.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Wei, B.; Lan, B.; Liang, L.; Liu, H. DGRO: Doppler Velocity and Gyroscope-Aided Radar Odometry. Sensors 2024, 24, 6559. https://doi.org/10.3390/s24206559
Guo C, Wei B, Lan B, Liang L, Liu H. DGRO: Doppler Velocity and Gyroscope-Aided Radar Odometry. Sensors. 2024; 24(20):6559. https://doi.org/10.3390/s24206559
Chicago/Turabian StyleGuo, Chao, Bangguo Wei, Bin Lan, Lunfei Liang, and Houde Liu. 2024. "DGRO: Doppler Velocity and Gyroscope-Aided Radar Odometry" Sensors 24, no. 20: 6559. https://doi.org/10.3390/s24206559
APA StyleGuo, C., Wei, B., Lan, B., Liang, L., & Liu, H. (2024). DGRO: Doppler Velocity and Gyroscope-Aided Radar Odometry. Sensors, 24(20), 6559. https://doi.org/10.3390/s24206559