Goji Disease and Pest Monitoring Model Based on Unmanned Aerial Vehicle Hyperspectral Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subsection
2.2. Spectral Reflectance Measurement
2.3. Data Analysis
2.3.1. Spectral Data Preprocessing
2.3.2. Feature Parameter Selection
2.3.3. Method Selection
3. Discussion
3.1. Spectral Reflectance Detection Results
3.2. Correlation Analysis of Disease Index
3.3. Univariate Linear Regression Model
3.4. Multiple Linear Regression
3.5. Fully Connected Neural Network Model
3.5.1. Forward Propagation
- Hidden layer: Each neuron j in the hidden layer receives a weighted sum of all inputs from the input layer plus a bias, as follows:
- Apply an activation function f (such as ReLU) to each input of the hidden neurons to obtain the following output:
- Output layer: Each neuron k in the output layer similarly receives a weighted sum of all outputs from the hidden layer plus a bias, as follows:
3.5.2. Loss Functions
- The mean squared error is as follows:
- The cross-entropy loss is as follows:
3.5.3. Backpropagation
- Compute the error term for the output layer as follows:
- Propagate the error term to the hidden layer as follows:
- Update weights and biases as follows:
- (1)
- Update weights in the output layer as follows:
- (2)
- Update weights in the hidden layer as follows:
3.5.4. Application of Fully Connected Neural Networks in the Detection of Diseases and Pests in Goji Berries
4. Results
4.1. Univariate Linear Regression Model Validation
4.2. Multivariate Linear Regression Model Validation
4.3. Fully Connected Neural Network Model Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xue, Q.F.; Zou, G.; Xie, M.T. Occurrence and control measures of main pests and diseases of Goji berry. Plant Health Med. 2011, 24, 29–31. [Google Scholar]
- Zhang, G.L. Pest and disease control techniques for Goji berry. Contemp. Hortic. 2013, 24, 69. [Google Scholar]
- Nilsson, H.E. Remote Sensing of Oil Seed Rape Infected by Sclerotinia Stem Rot and Verticillium Wilt. Sver. Lantbruksuniv 1985, 33, 231998. [Google Scholar]
- Anand, T.; Sinha, S.; Mandal, M. AgriSegNet: Deep Aerial Semantic Segmentation Framework for IoT-Assisted Precision Agriculture. IEEE Sens. J. 2021, 21, 17581–17590. [Google Scholar] [CrossRef]
- Hu, L.B.; Lan, Y.B.; Zhang, S.L. Research Progress on Remote Sensing Monitoring of Pests and Diseases in Cotton. Shandong Agric. Sci. 2024, 56, 164–171. [Google Scholar]
- Whetton, R.L.; Hassall, K.L.; Waine, T.W. Hyperspectral measurements of yellow rust and fusarium head blight in cereal crops: Part 1: Laboratory study. Biosyst. Eng. 2018, 166, 101–115. [Google Scholar] [CrossRef]
- Wang, X.L.; Deng, J.Z.; Huang, H.S. Identification of pests incotton field based on hyperspectral data. J. South China Agric. Univ. 2019, 40, 97–103. [Google Scholar]
- Lakshmi, V.; Ramesh, A.; Teja, Y.S. An eficient frame-work for disease detection and classification in cotton plants. J. Eng. Sci. 2021, 12, 520–525. [Google Scholar]
- Dilixiatl, Y.; Zhou, J.P.; Xu, Y. Cotton pest monitoring based on Logistic algorithm and remote sensing image. China Agric. Univ. 2022, 43, 87–95. [Google Scholar]
- Wu, W.L.; Liu, G.; Ma, Q. Adaptability Analysis of Aceria macrodonis Keifer in Ningxia Based on Maxent Model. Biol. J. Mt. Agric. Biol. 2021, 41, 66–70. [Google Scholar]
- Ge, G.X. The Study of Monitoring Winter Wheat Growth and Rhizoctonia Solani Based on Remote Sensing. Master’s Thesis, Nanjing University of Information Science & Technology, Nanjing, China, 2015. [Google Scholar]
- Chu, X.L.; Yuan, H.F.; Lu, W.Z. Progress and application of spectral data pretreatment and wavelength selection methods in NIR analytical technique. Prog. Chem. 2004, 16, 528–542. [Google Scholar]
- Tsai, F.; Philpot, W. Derivative analysis of hyperspectral data. Remote Sens. Environ. 1998, 66, 41–51. [Google Scholar] [CrossRef]
- Xie, Y.P.; Chen, F.N.; Zhang, J.C.; Zhou, P.; Wang, H.J.; Wu, K.H. Study on monitoring of common diseases of crops based on hyperspectral technology. Spectrosc. Spect. Anal. 2018, 38, 2233–2240. [Google Scholar]
- Shen, W.Y. Inversion of Winter Wheat Powdery Mildew Based on Hyperspectral Remote Sensing. Master’s Thesis, Nanjing University of Information Science & Technology, Nanjing, China, 2016. [Google Scholar]
- Pu, R.L.; Gong, P. Hyperspectral Remote Sensing and Its Applications; Higher Education Press: Beijing, China, 2000. [Google Scholar]
- Luo, J.; Huang, W.; Zhao, J.; Zhang, J.; Zhao, C. Detecting aphid density of winter wheat leaf using hyperspectral measurements. Earth Obs. Remote Sens. 2013, 6, 690–698. [Google Scholar] [CrossRef]
- Wang, S.Q.; Li, W.D.; Li, J.; Liu, X.S. Prediction of soil texture using FT-NIR spectroscopy and PXRF spectrometry with data fusion. Soil. Sci. 2013, 178, 626–638. [Google Scholar] [CrossRef]
- Gumma, M.K. Mapping rice areas of south asia using MODIS multitemporal data. Remote Sens. 2011, 5, 053547. [Google Scholar] [CrossRef]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef]
- Haboudane, D. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Guo, R.; Zhu, X.; Liu, T. Automatic detection of crop lodging from multitemporal satellite data based on the isolation forest algorithm. Comput. Electron. Agric. 2023, 215, 108415. [Google Scholar] [CrossRef]
- Castro, K.; Sanchez-Azofeifa, G. Changes in spectral properties, chlorophyll content and internal mesophyll structure of senescing populus balsamifera and populus tremuloides leaves. Sensors 2008, 8, 51–69. [Google Scholar] [CrossRef]
- Liang, W.; Li, Y.J.; Cen, H.Y.; Zhu, J.P.; Yin, W.X.; Wu, W.K.; Zhu, H.Y.; Sun, D.W.; Zhou, W.J.; He, Y. Combining UAV-based vegetation indices and image classification to estimate flower number in oilseed rape. Remote Sens. 2018, 10, 1484. [Google Scholar] [CrossRef]
- Fang, W.; Rong, Z.; Wei, S. Technical Regulation for Monitoring and Forecasting of Goji Insect Pests and Diseases; Ningxia Academy of Agricultural and Forestry Sciences: Yinchuan, China, 2023. [Google Scholar]
- Ekwe, M.C.; Adeluyi, O.; Verrelst, J.; Kross, A.; Odiji, C. Estimating rainfed groundnut's leaf area index using sentinel-2 based on machine learning regression algorithms and empirical models. Precis. Agric. 2024, 25, 1404–1428. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Shi, Y.J.; Chen, P.F. Maize above-ground biomass retrieval using unmanned aerial vehicle (UAV) hyperspectral remote sensing imagery. Chin. Agric. Sci. Bull. 2019, 35, 117–123. [Google Scholar]
- You, S.B.; Yan, Y. Stepwise regression analysis and its application. Stat. Decis. 2017, 14, 31–35. [Google Scholar]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations ICLR 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Tian, X.J.; Gong, H.; Tu, Y. Die Casting Quality Prediction Algorithm Based on Fully Connected Neural Network. J. Netshape Form. Eng. 2024, 16, 159–164. [Google Scholar]
- He, T.; Zhou, N.; Wu, X.Y. Thickness Prediction of Reservoir Effective Sand Body by DeepFully Connected Neural Network. J. Jilin Univ. (Earth Sci. Ed.) 2023, 53, 1262–1274. [Google Scholar]
Parameters | Value |
---|---|
Model | FLAME-T-VIS-NIR-ES |
Signal-to-noise ratio | 250:1 |
Spectral resolution | 1.33 μm |
Dark noise | 50 RMS counts |
Integration time | 1 ms~65 s |
Parameters | Value |
---|---|
Unmanned aerial vehicle model | DJI M300 |
Imaging spectrometer model | Nano-Hyperspec |
Altitude | 15 m |
Geospatial resolution | 1 cm |
Lateral overlap | 30% |
Flight speed | 1.1 m/s |
Spectral wavebands | 400~1000 nm |
Number of channels | 270 |
Field of view | 32° |
Characteristic Parameter | Definition |
---|---|
SDb | Sum of the first-order derivative values within the blue edge wavelength range (492~530 nm) |
SDg | Sum of the first-order derivative values within the green edge wavelength range (505~553 nm) |
SDy | Sum of the first-order derivative values within the yellow edge wavelength range (555~571 nm) |
SDr | Sum of the first-order derivative values within the red edge wavelength range (680~760 nm) |
SDr/SDb | Ratio of the total sum of first-order derivatives within the red edge to that within the blue edge |
SDr/SDg | Ratio of the total sum of first-order derivatives within the red edge to that within the green edge |
(SDr − SDb)/(SDr + SDb) | The normalized sum of first-order derivatives within the red edge compared to that within the blue edge. |
(SDr − SDg)/(SDr + SDg) | The normalized sum of first-order derivatives within the red edge compared to that within the green edge. |
PSSRa | R800/R680 |
PSSRb | R800/R635 |
PSSRc | R800/R470 |
Vegetation indices | Formula | Reference |
---|---|---|
Normalized Difference Vegetation Index | NDVI = (NIR–Red)/(NIR + Red) | [17] |
Green Normalized Difference Vegetation Index | GNDVI = (NIR−Green)/(NIR + Green) | [18] |
Modified Triangular Vegetation Index | MTVI = 1.2 × (1.2 × (NIR−Green) − 2.5 × (Red−Green)) | [19] |
Modified NDVI 705 | mNDVI705 = (NIR−RedEdge)/(NIR + RedEdge) | [20] |
Modified Simple Ratio 705 | mSR705 = NIR/RedEdge | [21] |
Red–Green Ratio Index | RGRI = Red/Green | [22] |
Triangular Vegetation Index | TVI = 0.5 × (120 × (NIR−Green) − 200 × (Red−Green)) | [23] |
Characteristic Parameter and Sensitive Bands | DI | |||
---|---|---|---|---|
Goji Psyllids | Goji Gall Mites | |||
Pearson Correlation | Sig. | Pearson Correlation | Sig. | |
SDb | 0.985 ** | 0.002 | 0.996 ** | 0 |
SDg | −0.921 * | 0.026 | −0.94 * | 0.018 |
SDy | 0.965 ** | 0.008 | 0.962 ** | 0.009 |
SDr | 0.893 * | 0.041 | 0.951 * | 0.013 |
SDr/SDb | 0.405 | 0.499 | −0.149 | 0.811 |
SDr/SDg | 0.753 | 0.142 | −0.22 | 0.722 |
(SDr − SDb)/(SDr + SDb) | 0.443 | 0.455 | −0.051 | 0.935 |
(SDr − SDg)/(SDr + SDg) | 0.977 ** | 0.004 | 0.975 ** | 0.005 |
PSSRa | 0.483 | 0.41 | 0.501 | 0.39 |
PSSRb | 0.059 | 0.925 | 0.789 | 0.113 |
PSSRc | 0.725 | 0.166 | 0.448 | 0.449 |
GNDVI | −0.983 ** | 0.003 | −0.99 ** | 0.001 |
first-order derivative of R700 | −0.993 ** | 0.001 | −0.99 ** | 0.001 |
first-order derivative of R760 | −0.767 | 0.13 | −0.561 | 0.325 |
R850 | −0.945 * | 0.015 | 0.62 | 0.264 |
R975/R955 | 0.89 * | 0.043 | 0.144 | 0.817 |
NDVI | 0.853 | 0.066 | 0.863 | 0.06 |
GNDVI | −0.983 ** | 0.003 | −0.99 ** | 0.001 |
MTVI | 0.508 | 0.382 | 0.56 | 0.326 |
mNDVI705 | 0.654 | 0.232 | 0.623 | 0.262 |
mSR705 | −0.676 | 0.21 | −0.777 | 0.122 |
RGRI | −0.533 | 0.355 | −0.227 | 0.713 |
TVI | −0.472 | 0.422 | −0.561 | 0.325 |
Types of Diseases and Pests | Simulation Equation | R2 | Sig. |
---|---|---|---|
goji psyllids | DI = 10.119 − 1264.591 × first-order derivative of R700 | 0.986 | 0.001 |
DI = 13.587 − 520.533 × SDb | 0.967 | 0.003 | |
DI = 8.264 + 1496.754 × SDg | 0.827 | 0.016 | |
goji gall mites | DI = 5.732 − 474.858 × first-order derivative of R700 | 0.983 | 0.001 |
DI = 5.959 − 173.345 × SDb | 0.98 | 0.001 | |
DI = 6.072 − 155.721 × SDg | 0.972 | 0.002 |
Types of Diseases and Pests | Simulation Equation | R2 | Sig. |
---|---|---|---|
goji psyllids | DI = 13.587 − 520.533 × SDb | 0.976 | 0.003 |
DI = 12.267 − 614.427 × SDb − 176.924 × SDy | 0.985 | 0.001 | |
goji gall mites | DI = 5.732 − 474.858 × GNDVI | 0.972 | 0.003 |
DI = 6.223 − 544.749 × first-order derivative of R700 − 209.454 × GNDVI | 0.988 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.; Zhang, B.; Zhang, C.; Chen, Z.; Chang, N.; Zhou, B.; Ke, K.; Tang, F. Goji Disease and Pest Monitoring Model Based on Unmanned Aerial Vehicle Hyperspectral Images. Sensors 2024, 24, 6739. https://doi.org/10.3390/s24206739
Zhao R, Zhang B, Zhang C, Chen Z, Chang N, Zhou B, Ke K, Tang F. Goji Disease and Pest Monitoring Model Based on Unmanned Aerial Vehicle Hyperspectral Images. Sensors. 2024; 24(20):6739. https://doi.org/10.3390/s24206739
Chicago/Turabian StyleZhao, Ruixin, Biyun Zhang, Chunmin Zhang, Zeyu Chen, Ning Chang, Baoyu Zhou, Ke Ke, and Feng Tang. 2024. "Goji Disease and Pest Monitoring Model Based on Unmanned Aerial Vehicle Hyperspectral Images" Sensors 24, no. 20: 6739. https://doi.org/10.3390/s24206739
APA StyleZhao, R., Zhang, B., Zhang, C., Chen, Z., Chang, N., Zhou, B., Ke, K., & Tang, F. (2024). Goji Disease and Pest Monitoring Model Based on Unmanned Aerial Vehicle Hyperspectral Images. Sensors, 24(20), 6739. https://doi.org/10.3390/s24206739