Sensing and Perception in Robotic Weeding: Innovations and Limitations for Digital Agriculture
Abstract
:1. Introduction
Weed | Regional Distribution | Crops | Features | Image |
---|---|---|---|---|
Amaranthus palmeri (Palmer Amaranth) [21] | North America, South America | Soybeans, cotton, corn, peanuts | Glyphosate-resistant, rapid growth, prolific seed production (up to 1 million seeds per plant) | |
Chenopodium album (Lamb’s Quarters) [22] | North America, Europe, Asia | Maize, soybeans, vegetables | Highly competitive, high seed production, wide tolerance to different environments | |
Convolvulus arvensis (Field Bindweed) [23] | Worldwide (temperate regions) | Wheat, barley, corn, cotton | Deep root system, difficult to control, produces many seeds (seeds can remain viable for years) | |
Cyperus rotundus (Purple Nutsedge) [24] | Tropics, subtropics, temperate zones | Rice, sugarcane, vegetables | Perennial weed, forms tubers, very competitive, difficult to eradicate | |
Echinochloa crus-galli (Barnyardgrass) [25] | Worldwide (tropics and subtropics) | Rice, maize, wheat | Highly adaptive, competitive, rapid growth, herbicide-resistant populations | |
Sorghum halepense (Johnsongrass) [26] | North America, Europe, Asia, Africa | Corn, soybeans, sorghum, cotton | Perennial, spreads via rhizomes and seeds, highly competitive | |
Setaria viridis (Green Foxtail) [27] | Worldwide | Cereals (wheat, barley, oats), corn | Annual grass, rapid seed germination, competitive with crops for nutrients |
2. Innovation in Sensing System for Robotic Weeding
3. Imaging Solutions
3.1. RGB Cameras
3.2. NIR Cameras
3.3. Spectral, Hyperspectral, and Multispectral Cameras
3.4. Thermal Cameras
4. Non-Imaging Solutions
4.1. Laser-Driven Sensing
4.2. Seed Mapping
4.3. LIDAR and ToF
4.4. Ultrasonic Systems
5. Field Applications and Technical Challenges
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fontanelli, M.; Frasconi, C.; Martelloni, L.; Pirchio, M.; Raffaelli, M.; Peruzzi, A. Innovative strategies and machines for physical weed control in organic and integrated vegetable crops. Chem. Eng. Trans. 2015, 44, 211–216. [Google Scholar] [CrossRef]
- Steward, B.; Gai, J.; Tang, L. The use of agricultural robots in weed management and control. In The Use of Agricultural Robots in Weed Management and Control; Burleigh Dodds Science Publishing: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Saunders, J.T.; Greer, G.; Bourdôt, G.; Saunders, C.; James, T.; Rolando, C.; Monge, J.; Watt, M.S. The economic costs of weeds on productive land in New Zealand. Int. J. Agric. Sustain. 2017, 15, 380–392. [Google Scholar] [CrossRef]
- Gharde, Y.; Singh, P.; Dubey, R.; Gupta, P. Assessment of yield and economic losses in agriculture due to weeds in India. Crop. Prot. 2018, 107, 12–18. [Google Scholar] [CrossRef]
- WSSA. WSSA Calculates Billions in Potential Economic Losses from Uncontrolled Weeds. 2016. Available online: https://wssa.net/2016/05/wssa-calculates-billions-in-potential-economic-losses-from-uncontrolled-weeds/ (accessed on 4 May 2016).
- Axbom, S.; Ralsgård, L. Design of an Autonomous Weeding Vehicle Used in the Agricultural Industry. Master’s Thesis, Division of Product Development, Department of Design Sciences, Faculty of engineering LTH, Lund University, Lund, Sweden, 2018. [Google Scholar]
- Rad, A.K.; Astaikina, A.; Streletskii, R.; Zarei, M.; Etesami, H. Chapter 10—Fungicide and pesticide fallout on aquatic fungi. In Freshwater Mycology; Bandh, S.A., Shafi, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 171–191. [Google Scholar] [CrossRef]
- Bakker, T.; Asselt, K.; Bontsema, J.; Müller, J.; van Straten, G. Systematic design of an autonomous platform for robotic weeding. J. Terramechanics 2010, 47, 63–73. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Balasundram, S.K.; Rad, A.K.; Sultan, M.; Hameed, I.A. An Overview of Soil Moisture and Salinity Sensors for Digital Agriculture Applications; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Sturm, B.; Weltzien, C.; Fulton, J.; Khosla, R.; Schirrmann, M.; Raut, S.; Basavegowda, D.H.; Yamin, M.; Hameed, I.A. Digitalization of agriculture for sustainable crop production: A use-case review. Front. Environ. Sci. 2024, 12, 1375193. [Google Scholar] [CrossRef]
- Fennimore, S.A.; Cutulle, M. Robotic weeders can improve weed control options for specialty crops. Pest Manag. Sci. 2019, 75, 1767–1774. [Google Scholar] [CrossRef]
- Su, W.-H. Crop plant signaling for real-time plant identification in smart farm: A systematic review and new concept in artificial intelligence for automated weed control. Artif. Intell. Agric. 2020, 4, 262–271. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Mahajan, G.; Chauhan, B.S. Nonconventional weed management strategies for modern agriculture. Weed Sci. 2015, 63, 723–747. [Google Scholar] [CrossRef]
- Pérez-Ruíz, M.; Slaughter, D.C.; Fathallah, F.A.; Gliever, C.J.; Miller, B.J. Co-robotic intra-row weed control system. Biosyst. Eng. 2014, 126, 45–55. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, W.; Wei, X. A review on weed detection using ground-based machine vision and image processing techniques. Comput. Electron. Agric. 2019, 158, 226–240. [Google Scholar] [CrossRef]
- Dyrmann, M.; Karstoft, H.; Midtiby, H.S. Plant species classification using deep convolutional neural network. Biosyst. Eng. 2016, 151, 72–80. [Google Scholar] [CrossRef]
- Kanimozhi, T.; Umarani, S. A comparative study of energy-efficient clustering protocols for WSN-internet-of-things. Int. J. Hydromechatronics 2023, 6, 177–196. [Google Scholar] [CrossRef]
- Ayua, S.I. Random Forest Ensemble Machine Learning Model for Early Detection and Prediction of Weight Category. J. Data Sci. Intell. Syst. 2023, 1–8. [Google Scholar] [CrossRef]
- Khalil, Z.H.; Khaleel, A.H. Design of a Multilayer Perceptron Network Based on the Normalized Histogram to Develop Yields Predictive Model. J. Data Sci. Intell. Syst. 2023. [Google Scholar] [CrossRef]
- Chinthamu, N.; Karukuri, M. Data Science and Applications. J. Data Sci. Intell. Syst. 2023, 1, 83–91. [Google Scholar] [CrossRef]
- Ward, S.M.; Webster, T.M.; Steckel, L.E. Palmer Amaranth (Amaranthus palmeri): A Review. Weed Technol. 2013, 27, 12–27. [Google Scholar] [CrossRef]
- Holm, L.; Doll, J.; Holm, E.; Pancho, J.V.; Herberger, J.P. World Weeds: Natural Histories and Distribution; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Parker, C.; Fryer, J. Weed Control Problems Causing Major Reductions in World Food Supplies; FAO Plant Protection Bulletin: Rome, Italy, 1975; Volume 23. [Google Scholar]
- Holm, L.G.; Plucknett, D.L.; Pancho, J.V.; Herberger, J.P. The World’s Worst Weeds. In Distribution and Biology; East-West Center: Hawaii, HI, USA, 1977. [Google Scholar]
- Chauhan, B.S.; Johnson, D.E. Ecological studies on Echinochloa crus-galli and the implications for weed management in direct-seeded rice. Crop. Prot. 2011, 30, 1385–1391. [Google Scholar] [CrossRef]
- Warwick, S.I.; Black, L.D. THE BIOLOGY OF CANADIAN WEEDS: 61. Sorghum halepense (L.) PERS. Can. J. Plant Sci. 1983, 63, 997–1014. [Google Scholar] [CrossRef]
- Dekker, J. The foxtail (Setaria) species-group. Weed Sci. 2003, 51, 641–656. [Google Scholar] [CrossRef]
- VGN. Weeding Robots Put Farms in Better Control. Available online: https://vegetablegrowersnews.com/article/weeding-robots-put-farms-in-better-control/ (accessed on 1 February 2022).
- Pearce, R. The Robots Are Here, and Ready to Weed Your Field. Country-Guide. Available online: https://www.country-guide.ca/machinery/the-robots-are-here-and-ready-to-weed-your-field/ (accessed on 27 January 2022).
- Pérez, A.J.; López, F.; Benlloch, J.V.; Christensen, S. Colour and shape analysis techniques for weed detection in cereal fields. Comput. Electron. Agric. 2000, 25, 197–212. [Google Scholar] [CrossRef]
- Andújar, D.; Escolà, A.; Dorado, J.; Fernández-Quintanilla, C. Weed discrimination using ultrasonic sensors. Weed Res. 2011, 51, 543–547. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Gongal, A.; Amatya, S.; Karkee, M.; Zhang, Q.; Lewis, K. Sensors and systems for fruit detection and localization: A review. Comput. Electron. Agric. 2015, 116, 8–19. [Google Scholar] [CrossRef]
- Hamuda, E.; Mc Ginley, B.; Glavin, M.; Jones, E. Automatic crop detection under field conditions using the HSV colour space and morphological operations. Comput. Electron. Agric. 2017, 133, 97–107. [Google Scholar] [CrossRef]
- Mahlein, A.-K. Plant Disease Detection by Imaging Sensors—Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Dis. 2015, 100, 241–251. [Google Scholar] [CrossRef]
- Belbachir, A.N.; Göbel, P.M. Smart Cameras: A Historical Evolution. In Smart Cameras; Belbachir, A.N., Ed.; Springer: New York, NY, USA, 2010; pp. 3–17. [Google Scholar] [CrossRef]
- Zhang, D.; Wei, B. Robotics and Mechatronics for Agriculture; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Linton, J. SRDC Grower Group Innovation Project Final Report Precision Spot Spraying System: It Works in Grains Will It Work in Cane? BSES: New Delhi, India, 2009. [Google Scholar]
- Riczu, P.; Tamás, J. Applicability of precision weed detection technologies. Acta Agrar. Debreceniensis 2013, 51, 163–168. [Google Scholar] [CrossRef]
- Kool, J.; de Jonge, E.; Nieuwenhuizen, A.; Braam, H. Green on Green Weed Detection: Finding Weeds in a Soybean Crop in Brazilian Fields with the Rometron WEED-IT Sensor: Intermediary Report; Wageningen Plant Research: Wageningen, The Netherlands, 2023. [Google Scholar]
- Deere. SEE & SPRAY™ ULTIMATE Targeted, In-Crop Spraying. Available online: https://www.deere.com/en/sprayers/see-spray-ultimate/ (accessed on 13 August 2024).
- Ghaly, A.; Ibrahim, M. Mechanization of Weed Management in Sugar Beet. In Sugar Beet Cultivation, Management and Processing; Springer Nature Singapore: Singapore, 2022; pp. 327–367. [Google Scholar] [CrossRef]
- Naio-Technologies. DINO: The World’s First Row-Straddling Weeding Robot to Reach The market. Available online: https://www.naio-technologies.com/en/news/dino-the-worlds-first-row-straddling-weeding-robot-to-reach-the-market/ (accessed on 13 August 2024).
- The Robot Report. Farm Wise Delivers Cultivation as a Service for Farmers. Available online: https://www.therobotreport.com/farmwise-delivers-cultivation-as-a-service-for-farmers/ (accessed on 13 August 2024).
- Collings, A. Robocrop Helps with Weed Removal. 2006. Available online: https://www.fwi.co.uk/arable/robocrop-helps-with-weed-removal (accessed on 13 August 2024).
- Ecorobotix. AVO. Available online: https://ecorobotix.com/en/avo/ (accessed on 13 August 2024).
- Robohub. Ladybird with James Underwood. Available online: https://robohub.org/robots-ladybird/ (accessed on 13 August 2024).
- Romeo, J.; Guerrero, J.M.; Montalvo, M.; Emmi, L.; Guijarro, M.; Gonzalez-de-Santos, P.; Pajares, G. Camera sensor arrangement for crop/weed detection accuracy in agronomic images. Sensors 2013, 13, 4348–4366. [Google Scholar] [CrossRef]
- Ceccarelli, A.; Secci, F. RGB Cameras Failures and Their Effects in Autonomous Driving Applications. IEEE Trans. Dependable Secur. Comput. 2022, 20, 2731–2745. [Google Scholar] [CrossRef]
- NEG. Image Sensor Cover Glass. Available online: https://www.neg.co.jp/en/rd/topics/product-cover-glass/ (accessed on 20 June 2024).
- Saraswathi, S.; Eduardo, A.; Ricardo, M.; André, V.; Pedro, D.G. Automated Weed Detection Systems: A Review. KnE Eng. 2020, 5, 271–284. [Google Scholar] [CrossRef]
- Juwono, F.H.; Wong, W.K.; Verma, S.; Shekhawat, N.; Lease, B.A.; Apriono, C. Machine learning for weed–plant discrimination in agriculture 5.0: An in-depth review. Artif. Intell. Agric. 2023, 10, 13–25. [Google Scholar] [CrossRef]
- Gerhards, R.; Andújar Sanchez, D.; Hamouz, P.; Peteinatos, G.G.; Christensen, S.; Fernandez-Quintanilla, C. Advances in site-specific weed management in agriculture—A review. Weed Res. 2022, 62, 123–133. [Google Scholar] [CrossRef]
- Burkart, A.; Hecht, V.L.; Kraska, T.; Rascher, U. Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution. Precis. Agric. 2018, 19, 134–146. [Google Scholar] [CrossRef]
- Chawade, A.; van Ham, J.; Blomquist, H.; Bagge, O.; Alexandersson, E.; Ortiz, R. High-Throughput Field-Phenotyping Tools for Plant Breeding and Precision Agriculture. Agronomy 2019, 9, 258. [Google Scholar] [CrossRef]
- Lu, Y.; Young, S. A survey of public datasets for computer vision tasks in precision agriculture. Comput. Electron. Agric. 2020, 178, 105760. [Google Scholar] [CrossRef]
- Sudars, K.; Jasko, J.; Namatevs, I.; Ozola, L.; Badaukis, N. Dataset of annotated food crops and weed images for robotic computer vision control. Data Brief 2020, 31, 105833. [Google Scholar] [CrossRef]
- Gené-Mola, J.; Vilaplana, V.; Rosell-Polo, J.R.; Morros, J.-R.; Ruiz-Hidalgo, J.; Gregorio, E. Multi-modal deep learning for Fuji apple detection using RGB-D cameras and their radiometric capabilities. Comput. Electron. Agric. 2019, 162, 689–698. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Vandevoorde, K.; Wouters, N.; Kayacan, E.; De Baerdemaeker, J.G.; Saeys, W. Detection of red and bicoloured apples on tree with an RGB-D camera. Biosyst. Eng. 2016, 146, 33–44. [Google Scholar] [CrossRef]
- Huang, A.; Bachrach, A.; Henry, P.; Krainin, M.; Maturana, D.; Fox, D.; Roy, N. Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera. 2011. Available online: https://www.researchgate.net/publication/228941748_Visual_Odometry_and_Mapping_for_Autonomous_Flight_Using_an_RGB-D_Camera (accessed on 13 August 2024).
- Putra, B.T.W.; Soni, P. Improving nitrogen assessment with an RGB camera across uncertain natural light from above-canopy measurements. Precis. Agric. 2020, 21, 147–159. [Google Scholar] [CrossRef]
- Costa, L.; Nunes, L.; Ampatzidis, Y. A new visible band index (vNDVI) for estimating NDVI values on RGB images utilizing genetic algorithms. Comput. Electron. Agric. 2020, 172, 105334. [Google Scholar] [CrossRef]
- Gracia-Romero, A.; Vergara-Díaz, O.; Thierfelder, C.; Cairns, J.E.; Kefauver, S.C.; Araus, J.L. Phenotyping Conservation Agriculture Management Effects on Ground and Aerial Remote Sensing Assessments of Maize Hybrids Performance in Zimbabwe. Remote Sens. 2018, 10, 349. [Google Scholar] [CrossRef]
- Matese, A.; Di Gennaro, S.F. Practical Applications of a Multisensor UAV Platform Based on Multispectral, Thermal and RGB High Resolution Images in Precision Viticulture. Agriculture 2018, 8, 116. [Google Scholar] [CrossRef]
- de Lima, D.C.; Saqui, D.; Ataky, S.; Jorge, L.A.d.C.; Ferreira, E.J.; Saito, J.H. Estimating Agriculture NIR Images from Aerial RGB Data. In Proceedings of the Computational Science—ICCS, Faro, Portugal, 12–14 June 2019; Rodrigues, J.M.F., Cardoso, P.J.S., Monteiro, J., Lam, R., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J.J., Sloot, P.M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 562–574. [Google Scholar] [CrossRef]
- Endres, F.; Hess, J.; Sturm, J.; Cremers, D.; Burgard, W. 3-D Mapping With an RGB-D Camera. IEEE Trans. Robot. 2014, 30, 177–187. [Google Scholar] [CrossRef]
- Marin, J.F.; Mostaza-Colado, D.; Parra, L.; Yousfi, S.; Mauri, P.V.; Lloret, J. Comparison of performance in weed detection with aerial RGB and thermal images gathered at different height. In Proceedings of the ICNS 2021, Dulles, VA, USA, 20–22 April 2021; Available online: https://personales.upv.es/thinkmind/dl/conferences/icns/icns_2021/icns_2021_1_10_18002.pdf (accessed on 13 August 2024).
- Gašparović, M.; Zrinjski, M.; Barković, Đ.; Radočaj, D. An automatic method for weed mapping in oat fields based on UAV imagery. Comput. Electron. Agric. 2020, 173, 105385. [Google Scholar] [CrossRef]
- Rasmussen, J.; Nielsen, J.; Streibig, J.C.; Jensen, J.E.; Pedersen, K.S.; Olsen, S.I. Pre-harvest weed mapping of Cirsium arvense in wheat and barley with off-the-shelf UAVs. Precis. Agric. 2019, 20, 983–999. [Google Scholar] [CrossRef]
- Hassanein, M.; El-Sheimy, N. An Efficient Weed Detection Procedure Using Low-Cost Uav Imagery System for Precision Agriculture Applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-1, 181–187. [Google Scholar] [CrossRef]
- Fu, L.; Gao, F.; Wu, J.; Li, R.; Karkee, M.; Zhang, Q. Application of consumer RGB-D cameras for fruit detection and localization in field: A critical review. Comput. Electron. Agric. 2020, 177, 105687. [Google Scholar] [CrossRef]
- García-Berná, J.A.; Ouhbi, S.; Benmouna, B.; García-Mateos, G.; Fernández-Alemán, J.L.; Molina-Martínez, J.M. Systematic Mapping Study on Remote Sensing in Agriculture. Appl. Sci. 2020, 10, 3456. [Google Scholar] [CrossRef]
- Slaughter, D.C.; Giles, D.K.; Downey, D. Autonomous robotic weed control systems: A review. Comput. Electron. Agric. 2008, 61, 63–78. [Google Scholar] [CrossRef]
- Lottes, P.; Behley, J.; Milioto, A.; Stachniss, C. Fully Convolutional Networks With Sequential Information for Robust Crop and Weed Detection in Precision Farming. IEEE Robot. Autom. Lett. 2018, 3, 2870–2877. [Google Scholar] [CrossRef]
- Hashemi-Beni, L.; Gebrehiwot, A.; Karimoddini, A.; Shahbazi, A.; Dorbu, F. Deep Convolutional Neural Networks for Weeds and Crops Discrimination From UAS Imagery. Front. Remote Sens. 2022, 3, 755939. [Google Scholar] [CrossRef]
- Rai, N.; Zhang, Y.; Ram, B.; Schumacher, L.; Kiran, R.; Bajwa, S.; Sun, X. Applications of deep learning in precision weed management: A review. Comput. Electron. Agric. 2023, 206, 107698. [Google Scholar] [CrossRef]
- Verhoeven, G. Imaging the invisible using modified digital still cameras for straightforward and low-cost archaeological near-infrared photography. J. Archaeol. Sci. 2008, 35, 3087–3100. [Google Scholar] [CrossRef]
- Jung, C.; Zhou, K.; Feng, J. Fusionnet: Multispectral Fusion of RGB and NIR Images Using Two Stage Convolutional Neural Networks. IEEE Access 2020, 8, 23912–23919. [Google Scholar] [CrossRef]
- Widjaja Putra, B.T.; Soni, P. Evaluating NIR-Red and NIR-Red edge external filters with digital cameras for assessing vegetation indices under different illumination. Infrared Phys. Technol. 2017, 81, 148–156. [Google Scholar] [CrossRef]
- Sakamoto, T.; Gitelson, A.A.; Nguy-Robertson, A.L.; Arkebauer, T.J.; Wardlow, B.D.; Suyker, A.E.; Verma, S.B.; Shibayama, M. An alternative method using digital cameras for continuous monitoring of crop status. Agric. For. Meteorol. 2012, 154–155, 113–126. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, C.; Song, H.; Hoffmann, W.C.; Zhang, D.; Zhang, G. Evaluation of an Airborne Remote Sensing Platform Consisting of Two Consumer-Grade Cameras for Crop Identification. Remote Sens. 2016, 8, 257. [Google Scholar] [CrossRef]
- Wedding, B. The Non-Invasive Assessment of Avocado Maturity and Quality. Ph.D. Thesis, James Cook University, Townsville, Australia, 2018. [Google Scholar] [CrossRef]
- Cozzolino, D.; Porker, K.; Laws, M. An Overview on the Use of Infrared Sensors for in Field, Proximal and at Harvest Monitoring of Cereal Crops. Agriculture 2015, 5, 713–722. [Google Scholar] [CrossRef]
- Zhu, Y.; Cao, P.; Liu, S.; Zheng, Y.; Huang, C. Development of a New Method for Turbidity Measurement Using Two NIR Digital Cameras. ACS Omega 2020, 5, 5421–5428. [Google Scholar] [CrossRef]
- Hunt, E.R.; Hively, W.D.; Fujikawa, S.J.; Linden, D.S.; Daughtry, C.S.T.; McCarty, G.W. Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring. Remote Sens. 2010, 2, 290–305. [Google Scholar] [CrossRef]
- Hunt, E.R.; Hively, W.D.; McCarty, G.W.; Daughtry, C.S.T.; Forrestal, P.J.; Kratochvil, R.J.; Carr, J.L.; Allen, N.F.; Fox-Rabinovitz, J.R.; Miller, C.D. NIR-Green-Blue High-Resolution Digital Images for Assessment of Winter Cover Crop Biomass. GIScience Remote Sens. 2011, 48, 86–98. [Google Scholar] [CrossRef]
- Bert, G.; Carolina, B.; Pilar, G.; Nicolaas, T.; Andy, L. A tiny VIS-NIR snapshot multispectral camera. In Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VIII; SPIE: San Francisco, CA, USA, 2015. [Google Scholar] [CrossRef]
- Lebourgeois, V.; Bégué, A.; Labbé, S.; Mallavan, B.; Prévot, L.; Roux, B. Can Commercial Digital Cameras Be Used as Multispectral Sensors? A Crop Monitoring Test. Sensors 2008, 8, 7300–7322. [Google Scholar] [CrossRef] [PubMed]
- Soria, X.; Sappa, A.D.; Akbarinia, A. Multispectral single-sensor RGB-NIR imaging: New challenges and opportunities. In Proceedings of the 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Montreal, QC, Canada, 28 November–1 December 2017. [Google Scholar] [CrossRef]
- Sahin, H.M.; Miftahushudur, T.; Grieve, B.; Yin, H. Segmentation of weeds and crops using multispectral imaging and CRF-enhanced U-Net. Comput. Electron. Agric. 2023, 211, 107956. [Google Scholar] [CrossRef]
- Carbone, C.; Potena, C.; Nardi, D. Augmentation of Sunflower-Weed Segmentation Classification with Unity Generated Imagery Including Near Infrared Sensor Data. In Simulation and Modeling Methodologies, Technologies and Applications; Obaidat, M.S., Oren, T., Rango, F.D., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 42–63. [Google Scholar] [CrossRef]
- Yang, C. Hyperspectral Imagery for Mapping Crop Yield for Precision Agriculture. In Hyperspectral Imaging Technology in Food and Agriculture; Park, B., Lu, R., Eds.; Food Engineering Series; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Komi, P.J.; Jackson, M.R.; Parkin, R.M. Plant Classification Combining Colour and Spectral Cameras for Weed Control Purposes. In Proceedings of the 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 4–7 June 2007; pp. 2039–2042. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Tallada, J.G.; Bato, P.M.; Shrestha, B.P.; Kobayashi, T.; Nagata, M. Quality Evaluation of Plant Products. In Hyperspectral Imaging Technology in Food and Agriculture; Park, B., Lu, R., Eds.; Food Engineering Series; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Mahesh, S.; Jayas, D.S.; Paliwal, J.; White, N.D.G. Hyperspectral imaging to classify and monitor quality of agricultural materials. J. Stored Prod. Res. 2015, 61, 17–26. [Google Scholar] [CrossRef]
- Okamoto, H.; Murata, T.; Kataoka, T.; Hata, S.-I. Plant classification for weed detection using hyperspectral imaging with wavelet analysis. Weed Biol. Manag. 2007, 7, 31–37. [Google Scholar] [CrossRef]
- Lu, R.; Park, B. Introduction. In Hyperspectral Imaging Technology in Food and Agriculture; Park, B., Lu, R., Eds.; Food Engineering Series; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Wendel, A.; Underwood, J. Self-supervised weed detection in vegetable crops using ground based hyperspectral imaging. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016. [Google Scholar] [CrossRef]
- Kumar, L.; Schmidt, K.; Dury, S.; Skidmore, A. Imaging Spectrometry and Vegetation Science. In Imaging Spectrometry: Basic Principles and Prospective Applications; Meer, F.D.v.d., Jong, S.M.D., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 111–155. Available online: https://hdl.handle.net/1959.11/10764 (accessed on 13 August 2024).
- Kwon Noh, H.; Lu, R. Hyperspectral Reflectance and Fluorescence for Assessing Apple Quality; ASABE: St. Joseph, MI, USA, 2005; Available online: https://elibrary.asabe.org/abstract.asp?aid=19076 (accessed on 13 August 2024).
- Vrindts, E.; De Baerdemaeker, J. Optical Weed Detection and Evaluation Using Reflection Measurements. In Proceedings of the Photonics East (ISAM, VVDC, IEMB), Boston, MA, USA, 1–6 November 1998; pp. 279–289. [Google Scholar] [CrossRef]
- Okamoto, H.; Murata, T.; Kataoka, T.; Hata, S. WEED DETECTION USING HYPERSPECTRAL IMAGING. In Automation Technology for Off-Road Equipment, Proceedings of the 7–8 October 2004 Conference (Kyoto, Japan), St. Joseph, MI, USA, 7 October 2004. ASABE. [Google Scholar] [CrossRef]
- Caballero, D.; Calvini, R.; Amigo, J.M. Chapter 3.3—Hyperspectral imaging in crop fields: Precision agriculture. In Data Handling in Science and Technology; Amigo, J.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 32, pp. 453–473. [Google Scholar] [CrossRef]
- Feyaerts, F.; van Gool, L. Multi-spectral vision system for weed detection. Pattern Recognit. Lett. 2001, 22, 667–674. [Google Scholar] [CrossRef]
- Slaughter, D.C.; Giles, D.K.; Fennimore, S.A.; Smith, R.F. Multispectral Machine Vision Identification of Lettuce and Weed Seedlings for Automated Weed Control. Weed Technol. 2008, 22, 378–384. [Google Scholar] [CrossRef]
- Yu, F.; Jin, Z.; Guo, S.; Guo, Z.; Zhang, H.; Xu, T.; Chen, C. Research on weed identification method in rice fields based on UAV remote sensing. Front. Plant Sci. 2022, 13, 1037760. [Google Scholar] [CrossRef]
- Lee, W.S. Plant Health Detection and Monitoring. In Hyperspectral Imaging Technology in Food and Agriculture; Park, B., Lu, R., Eds.; Food Engineering Series; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Vrindts, E.; De Baerdemaeker, J.; Ramon, H. Weed Detection Using Canopy Reflection. Precis. Agric. 2002, 3, 63–80. [Google Scholar] [CrossRef]
- Lee, W.S.; Slaughter, D.C.; Giles, D.K. Robotic Weed Control System for Tomatoes. Precis. Agric. 1999, 1, 95–113. [Google Scholar] [CrossRef]
- Su, W.-H. Advanced Machine Learning in Point Spectroscopy, RGB-and Hyperspectral-Imaging for Automatic Discriminations of Crops and Weeds: A Review. Smart Cities 2020, 3, 767–792. [Google Scholar] [CrossRef]
- Middleton. What Is Hyperspectral Imaging? Available online: https://www.middletonspectral.com/resources/what-is-hyperspectral-imaging/ (accessed on 18 June 2024).
- Liu, B.; Li, R.; Li, H.; You, G.; Yan, S.; Tong, Q. Crop/Weed Discrimination Using a Field Imaging Spectrometer System. Sensors 2019, 19, 5154. [Google Scholar] [CrossRef] [PubMed]
- Zwiggelaar, R. A review of spectral properties of plants and their potential use for crop/weed discrimination in row-crops. Crop. Prot. 1998, 17, 189–206. [Google Scholar] [CrossRef]
- Ravikanth, L.; Jayas, D.S.; White, N.D.G.; Fields, P.G.; Sun, D.-W. Extraction of Spectral Information from Hyperspectral Data and Application of Hyperspectral Imaging for Food and Agricultural Products. Food Bioprocess Technol. 2017, 10, 1–33. [Google Scholar] [CrossRef]
- Du, J.-X.; Wang, X.-F.; Zhang, G.-J. Leaf shape based plant species recognition. Appl. Math. Comput. 2007, 185, 883–893. [Google Scholar] [CrossRef]
- Furbank, R.T.; Tester, M. Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011, 16, 635–644. [Google Scholar] [CrossRef]
- Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation: Principles, Techniques, and Applications; Oxford University Press: Oxford, UK; New York, NY, USA, 2010; Available online: https://global.oup.com/academic/product/remote-sensing-of-vegetation-9780199207794?cc=us&lang=en&# (accessed on 13 August 2024).
- Jin, J.; Tang, L. Corn plant sensing using real-time stereo vision. J. Field Robot. 2009, 26, 591–608. [Google Scholar] [CrossRef]
- van der Veeken, M.; Tang, L.; Willem Hofstee, J. Automated Corn Plant Spacing Measurement at Early Growth Stages Using Active Computer Vision; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2006. [Google Scholar] [CrossRef]
- Weiss, U.; Biber, P.; Laible, S.; Bohlmann, K.; Zell, A. Plant species classification using a 3D LIDAR sensor and machine learning. In Proceedings of the 2010 Ninth International Conference on Machine Learning and Applications, Washington, DC, USA, 12–14 December 2010; pp. 339–345. [Google Scholar] [CrossRef]
- Feyaerts, F.; Pollet, P.; Van Gool, L.; Wambacq, P. Sensor for Weed Detection Based on Spectral Measurements. In Proceedings of the Fourth International Conference on Precision Agriculture; ASA, CSSA, and SSSA Books; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 1999; pp. 1537–1548. [Google Scholar] [CrossRef]
- Andujar, D.; Martinez-Guanter, J. An Overview of Precision Weed Mapping and Management based on Remote Sensing. Remote Sens. 2022, 14, 3621. [Google Scholar] [CrossRef]
- Roberts, J.; Florentine, S. Advancements and developments in the detection and control of invasive weeds: A global review of the current challenges and future opportunities. Weed Sci. 2024, 72, 205–215. [Google Scholar] [CrossRef]
- Dale, L.M.; Thewis, A.; Boudry, C.; Rotar, I.; Dardenne, P.; Baeten, V.; Pierna, J.A.F. Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control: A Review. Appl. Spectrosc. Rev. 2013, 48, 142–159. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Tsoulias, N.; Zhao, M.; Paraforos, D.S.; Argyropoulos, D. Hyper- and Multi-spectral Imaging Technologies. In Encyclopedia of Smart Agriculture Technologies; Zhang, Q., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 1–11. [Google Scholar] [CrossRef]
- Che’Ya, N.N.; Dunwoody, E.; Gupta, M. Assessment of Weed Classification Using Hyperspectral Reflectance and Optimal Multispectral UAV Imagery. Agronomy 2021, 11, 1435. [Google Scholar] [CrossRef]
- de Castro, A.-I.; Jurado-Expósito, M.; Gómez-Casero, M.-T.; López-Granados, F. Applying Neural Networks to Hyperspectral and Multispectral Field Data for Discrimination of Cruciferous Weeds in Winter Crops. Sci. World J. 2012, 2012, 630390. [Google Scholar] [CrossRef] [PubMed]
- Manullang, M.C.; Lin, Y.-H.; Lai, S.-J.; Chou, N.-K. Implementation of Thermal Camera for Non-Contact Physiological Measurement: A Systematic Review. Sensors 2021, 21, 7777. [Google Scholar] [CrossRef] [PubMed]
- Leira, F.S.; Johansen, T.A.; Fossen, T.I. Automatic detection, classification and tracking of objects in the ocean surface from UAVs using a thermal camera. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015; pp. 1–10. [Google Scholar] [CrossRef]
- Aaron, E.; Dharmendra, S. Machine learning approaches to automate weed detection by UAV based sensors. Proc. SPIE 2019, 11008, 110080R. [Google Scholar] [CrossRef]
- Wen, T.; Li, J.-H.; Wang, Q.; Gao, Y.-Y.; Hao, G.-F.; Song, B.-A. Thermal imaging: The digital eye facilitates high-throughput phenotyping traits of plant growth and stress responses. Sci. Total Environ. 2023, 899, 165626. [Google Scholar] [CrossRef]
- Xu, B.; Meng, R.; Chen, G.; Liang, L.; Lv, Z.; Zhou, L.; Sun, R.; Zhao, F.; Yang, W. Improved weed mapping in corn fields by combining UAV-based spectral, textural, structural, and thermal measurements. Pest Manag. Sci. 2023, 79, 2591–2602. [Google Scholar] [CrossRef]
- Shirzadifar, A.; Bajwa, S.; Nowatzki, J.; Bazrafkan, A. Field identification of weed species and glyphosate-resistant weeds using high resolution imagery in early growing season. Biosyst. Eng. 2020, 200, 200–214. [Google Scholar] [CrossRef]
- Eide, A.; Koparan, C.; Zhang, Y.; Ostlie, M.; Howatt, K.; Sun, X. UAV-Assisted Thermal Infrared and Multispectral Imaging of Weed Canopies for Glyphosate Resistance Detection. Remote Sens. 2021, 13, 4606. [Google Scholar] [CrossRef]
- Pineda, M.; Barón, M.; Pérez-Bueno, M.-L. Thermal Imaging for Plant Stress Detection and Phenotyping. Remote Sens. 2021, 13, 68. [Google Scholar] [CrossRef]
- Peteinatos, G.G.; Weis, M.; Andújar, D.; Rueda Ayala, V.; Gerhards, R. Potential use of ground-based sensor technologies for weed detection. Pest Manag. Sci. 2014, 70, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Machleb, J.; Peteinatos, G.G.; Kollenda, B.L.; Andújar, D.; Gerhards, R. Sensor-based mechanical weed control: Present state and prospects. Comput. Electron. Agric. 2020, 176, 105638. [Google Scholar] [CrossRef]
- Brown, R.B.; Noble, S.D. Site-specific weed management: Sensing requirements—what do we need to see? Weed Sci. 2005, 53, 252–258. [Google Scholar] [CrossRef]
- Raja, R.; Nguyen, T.T.; Slaughter, D.C.; Fennimore, S.A. Real-time robotic weed knife control system for tomato and lettuce based on geometric appearance of plant labels. Biosyst. Eng. 2020, 194, 152–164. [Google Scholar] [CrossRef]
- Nanni, M.R.; Demattê, J.A.M.; Rodrigues, M.; dos Santos, G.L.A.A.; Reis, A.S.; de Oliveira, K.M.; Cezar, E.; Furlanetto, R.H.; Crusiol, L.G.T.; Sun, L. Mapping Particle Size and Soil Organic Matter in Tropical Soil Based on Hyperspectral Imaging and Non-Imaging Sensors. Remote Sens. 2021, 13, 1782. [Google Scholar] [CrossRef]
- Åstrand, B.; Baerveldt, A.-J. An Agricultural Mobile Robot with Vision-Based Perception for Mechanical Weed Control. Auton. Robot. 2002, 13, 21–35. [Google Scholar] [CrossRef]
- Klose, R.; Marquering, D.J.; Thiel, M.; Ruckelshausen, A.; Strautmann, B. Weedy—A Sensor Fusion Based Autonomous Field Robot for Selective Weed Control. 2008. Available online: https://www.semanticscholar.org/paper/Weedy-%E2%80%93-a-sensor-fusion-based-autonomous-field-for-Klose-Marquering/727ae9cd0ef2ee4741479210ad39dc496ad95b0b (accessed on 13 August 2024).
- Pire, T.; Mujica, M.; Civera, J.; Kofman, E. The Rosario dataset: Multisensor data for localization and mapping in agricultural environments. Int. J. Robot. Res. 2019, 38, 633–641. [Google Scholar] [CrossRef]
- Fountas, S.; Mylonas, N.; Malounas, I.; Rodias, E.; Hellmann Santos, C.; Pekkeriet, E. Agricultural Robotics for Field Operations. Sensors 2020, 20, 2672. [Google Scholar] [CrossRef]
- Atefi, A.; Ge, Y.; Pitla, S.; Schnable, J. Robotic Technologies for High-Throughput Plant Phenotyping: Contemporary Reviews and Future Perspectives. Front. Plant Sci. 2021, 12, 611940. [Google Scholar] [CrossRef]
- Andreasen, C.; Rakhmatulin, I.; Saberi, M.; Zhang, Z. Weed control with laser beams: An eco-friendly alternative to herbicides and mechanical weed control. AIP Conf. Proc. 2024, 2924, 040001. [Google Scholar] [CrossRef]
- Andreasen, C.; Vlassi, E.; Salehan, N.; Johannsen, K.S.; Jensen, S.M. Laser weed seed control: Challenges and opportunities. Front. Agron. 2024, 6, 1342372. [Google Scholar] [CrossRef]
- Sahba, K.; Askraba, S.; Alameh, K.E. Non-contact laser spectroscopy for plant discrimination in terrestrial crop spraying. Opt. Express 2006, 14, 12485–12493. [Google Scholar] [CrossRef] [PubMed]
- Bloomer, D.J.; Harrington, K.C.; Ghanizadeh, H.; James, T.K. Robots and shocks: Emerging non-herbicide weed control options for vegetable and arable cropping. N. Z. J. Agric. Res. 2024, 67, 81–103. [Google Scholar] [CrossRef]
- Mathiassen, S.K.; Bak, T.; Christensen, S.; Kudsk, P. The Effect of Laser Treatment as a Weed Control Method. Biosyst. Eng. 2006, 95, 497–505. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Mu, D.; Bai, L.; Zhuang, H.; Li, H. YOLOX-based blue laser weeding robot in corn field. Front. Plant Sci. 2022, 13, 1017803. [Google Scholar] [CrossRef]
- Fatima, H.S.; ul Hassan, I.; Hasan, S.; Khurram, M.; Stricker, D.; Afzal, M.Z. Formation of a Lightweight, Deep Learning-Based Weed Detection System for a Commercial Autonomous Laser Weeding Robot. Appl. Sci. 2023, 13, 3997. [Google Scholar] [CrossRef]
- Reiser, D.; Sehsah, E.-S.; Bumann, O.; Morhard, J.; Griepentrog, H.W. Development of an Autonomous Electric Robot Implement for Intra-Row Weeding in Vineyards. Agriculture 2019, 9, 18. [Google Scholar] [CrossRef]
- Chen, Z.J.; Shan, K.L.; Guo, Q.Y. Laser Navigation System Applied to Weeding Robot. Appl. Mech. Mater. 2012, 130–134, 2417–2420. [Google Scholar] [CrossRef]
- Andreasen, C.; Scholle, K.; Saberi, M. Laser Weeding With Small Autonomous Vehicles: Friends or Foes? Front. Agron. 2022, 4, 841086. [Google Scholar] [CrossRef]
- Rakhmatulin, I.; Andreasen, C. A Concept of a Compact and Inexpensive Device for Controlling Weeds with Laser Beams. In Agronomy 2020, 10, 1616. [Google Scholar] [CrossRef]
- Krupanek, J.; de Santos, P.G.; Emmi, L.; Wollweber, M.; Sandmann, H.; Scholle, K.; Di Minh Tran, D.; Schouteten, J.J.; Andreasen, C. Environmental performance of an autonomous laser weeding robot—A case study. Int. J. Life Cycle Assess 2024, 29, 1021–1052. [Google Scholar] [CrossRef]
- Andreasen, C.; Vlassi, E.; Salehan, N. Laser weeding: Opportunities and challenges for couch grass (Elymus repens (L.) Gould) control. Sci. Rep. 2024, 14, 11173. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Leal-Naranjo, J.A.; Ceccarelli, M.; Blackmore, S. A Novel Two-Degree-of-Freedom Gimbal for Dynamic Laser Weeding: Design, Analysis, and Experimentation. IEEE/ASME Trans. Mechatron. 2022, 27, 5016–5026. [Google Scholar] [CrossRef]
- Dille, J.A.; Milner, M.; Groeteke, J.J.; Mortensen, D.A.; Williams, M.M. How good is your weed map? A comparison of spatial interpolators. Weed Sci. 2003, 51, 44–55. [Google Scholar] [CrossRef]
- Upadhyaya, S.; Ehsani, M.; Mattson, M.L. Method and Apparatus for Ultra Precise GPS-Based Mapping of Seeds or Vegetation during Planting. Google Patents 2003. Available online: https://patents.google.com/patent/US6553312B2/en (accessed on 13 August 2024).
- Krähmer, H.; Andreasen, C.; Economou-Antonaka, G.; Holec, J.; Kalivas, D.; Kolářová, M.; Novák, R.; Panozzo, S.; Pinke, G.; Salonen, J.; et al. Weed surveys and weed mapping in Europe: State of the art and future tasks. Crop. Prot. 2020, 129, 105010. [Google Scholar] [CrossRef]
- Ehsani, M.; Upadhyaya, S.; Mattson, M. Seed location mapping using RTK GPS. Trans. ASAE 2004, 47, 909–914. [Google Scholar] [CrossRef]
- Griepentrog, H.W.; Nørremark, M.; Nielsen, H.; Blackmore, B.S. Seed Mapping of Sugar Beet. Precis. Agric. 2005, 6, 157–165. [Google Scholar] [CrossRef]
- Abidine, A.Z.; Heidman, B.C.; Upadhyaya, S.K.; Hills, D.J. Autoguidance system operated at high speed causes almost no tomato damage. Calif. Agric. 2004, 58, 44–47. [Google Scholar] [CrossRef]
- Pflanz, M.; Nordmeyer, H.; Schirrmann, M. Weed Mapping with UAS Imagery and a Bag of Visual Words Based Image Classifier. Remote Sens. 2018, 10, 1530. [Google Scholar] [CrossRef]
- LÓPez-Granados, F. Weed detection for site-specific weed management: Mapping and real-time approaches. Weed Res. 2011, 51, 1–11. [Google Scholar] [CrossRef]
- Kanagasingham, S.; Ekpanyapong, M.; Chaihan, R. Integrating machine vision-based row guidance with GPS and compass-based routing to achieve autonomous navigation for a rice field weeding robot. Precis. Agric. 2020, 21, 831–855. [Google Scholar] [CrossRef]
- DFROBOT. How RTK Technology Enhances Robotic Lawn Mower Precision. Available online: https://www.dfrobot.com/blog-13511.html (accessed on 8 February 2024).
- Andújar, D.; Escolà, A.; Rosell-Polo, J.R.; Fernández-Quintanilla, C.; Dorado, J. Potential of a terrestrial LiDAR-based system to characterise weed vegetation in maize crops. Comput. Electron. Agric. 2013, 92, 11–15. [Google Scholar] [CrossRef]
- Debnath, S.; Paul, M.; Debnath, T. Applications of LiDAR in Agriculture and Future Research Directions. J. Imaging 2023, 9, 57. [Google Scholar] [CrossRef] [PubMed]
- Rivera, G.; Porras, R.; Florencia, R.; Sánchez-Solís, J.P. LiDAR applications in precision agriculture for cultivating crops: A review of recent advances. Comput. Electron. Agric. 2023, 207, 107737. [Google Scholar] [CrossRef]
- Shahbazi, N.; Ashworth, M.B.; Callow, J.N.; Mian, A.; Beckie, H.J.; Speidel, S.; Nicholls, E.; Flower, K.C. Assessing the Capability and Potential of LiDAR for Weed Detection. Sensors 2021, 21, 2328. [Google Scholar] [CrossRef]
- Andújar, D.; Rueda-Ayala, V.; Moreno, H.; Rosell-Polo, J.R.; Escolá, A.; Valero, C.; Gerhards, R.; Fernández-Quintanilla, C.; Dorado, J.; Griepentrog, H.-W. Discriminating Crop, Weeds and Soil Surface with a Terrestrial LIDAR Sensor. Sensors 2013, 13, 14662–14675. [Google Scholar] [CrossRef]
- Fernández-Quintanilla, C.; Peña, J.M.; Andújar, D.; Dorado, J.; Ribeiro, A.; López-Granados, F. Is the current state of the art of weed monitoring suitable for site-specific weed management in arable crops? Weed Res. 2018, 58, 259–272. [Google Scholar] [CrossRef]
- Fuchs, S.; Hirzinger, G. Extrinsic and depth calibration of ToF-cameras. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Gai, J.; Xiang, L.; Tang, L. Using a depth camera for crop row detection and mapping for under-canopy navigation of agricultural robotic vehicle. Comput. Electron. Agric. 2021, 188, 106301. [Google Scholar] [CrossRef]
- Nakarmi, A.D.; Tang, L. Automatic inter-plant spacing sensing at early growth stages using a 3D vision sensor. Comput. Electron. Agric. 2012, 82, 23–31. [Google Scholar] [CrossRef]
- Toa, M.; Whitehead, A. Ultrasonic Sensing Basics; Texas Instruments: Dallas, TX, USA, 2020; pp. 53–75. Available online: https://www.ti.com/lit/an/slaa907d/slaa907d.pdf?ts=1723527321854 (accessed on 13 August 2024).
- Andújar, D.; Weis, M.; Gerhards, R. An Ultrasonic System for Weed Detection in Cereal Crops. Sensors 2012, 12, 17343–17357. [Google Scholar] [CrossRef]
- Chandra Swain, K.; Uz Zaman, Q.; W Schumann, A.; C Percival, D. Detecting Weed and Bare-spot in Wild Blueberry Using Ultrasonic Sensor Technology; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2009. [Google Scholar] [CrossRef]
- Amid, H.; Desa, A.; Ibrahim, A.H.; Redmond Ramin, S.; Siva, K.B.; Muhammad, Y. Development of a Field Robot Platform for Mechanical Weed Control in Greenhouse Cultivation of Cucumber. In Agricultural Robots; Jun, Z., Baohua, Z., Eds.; IntechOpen: London, UK, 2018; pp. 19–35. [Google Scholar] [CrossRef]
- Rohani, A. Weed detection using ultrasonic signal processing employing artificial neural network (ANN) with efficient extracted features. Agric. Eng. Int. CIGR J. 2022, 24. Available online: https://cigrjournal.org/index.php/Ejounral/article/view/7525/3905 (accessed on 13 August 2024).
- Li, Y.; Guo, Z.; Shuang, F.; Zhang, M.; Li, X. Key technologies of machine vision for weeding robots: A review and benchmark. Comput. Electron. Agric. 2022, 196, 106880. [Google Scholar] [CrossRef]
- Shi, J.; Bai, Y.; Diao, Z.; Zhou, J.; Yao, X.; Zhang, B. Row Detection BASED Navigation and Guidance for Agricultural Robots and Autonomous Vehicles in Row-Crop Fields: Methods and Applications. Agronomy 2023, 13, 1780. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Zhao, D.; Liu, C.; Liu, Z. Early weed identification based on deep learning: A review. Smart Agric. Technol. 2023, 3, 100123. [Google Scholar] [CrossRef]
- Hasan, A.S.M.M.; Sohel, F.; Diepeveen, D.; Laga, H.; Jones, M.G.K. A survey of deep learning techniques for weed detection from images. Comput. Electron. Agric. 2021, 184, 106067. [Google Scholar] [CrossRef]
- Albiero, D.; Pontin Garcia, A.; Kiyoshi Umezu, C.; Leme de Paulo, R. Swarm robots in mechanized agricultural operations: A review about challenges for research. Comput. Electron. Agric. 2022, 193, 106608. [Google Scholar] [CrossRef]
- Alatise, M.B.; Hancke, G.P. A Review on Challenges of Autonomous Mobile Robot and Sensor Fusion Methods. IEEE Access 2020, 8, 39830–39846. [Google Scholar] [CrossRef]
- Qu, J.; Zhang, Z.; Qin, Z.; Guo, K.; Li, D. Applications of Autonomous Navigation Technologies for Unmanned Agricultural Tractors: A Review. Machines 2024, 12, 218. [Google Scholar] [CrossRef]
- Singh, V.; Rana, A.; Bishop, M.; Filippi, A.M.; Cope, D.; Rajan, N.; Bagavathiannan, M. Chapter Three—Unmanned aircraft systems for precision weed detection and management: Prospects and challenges. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 159, pp. 93–134. [Google Scholar] [CrossRef]
- Dhanya, V.G.; Subeesh, A.; Kushwaha, N.L.; Vishwakarma, D.K.; Nagesh Kumar, T.; Ritika, G.; Singh, A.N. Deep learning based computer vision approaches for smart agricultural applications. Artif. Intell. Agric. 2022, 6, 211–229. [Google Scholar] [CrossRef]
- Rao, B.B.P.; Saluia, P.; Sharma, N.; Mittal, A.; Sharma, S.V. Cloud computing for Internet of Things & sensing based applications. In Proceedings of the 2012 Sixth International Conference on Sensing Technology (ICST), Kolkata, India, 18–21 December 2012; pp. 374–380. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. Int. J. Intell. Netw. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- Edan, Y.; Adamides, G.; Oberti, R. Agriculture Automation. In Springer Handbook of Automation; Nof, S.Y., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; pp. 1055–1078. [Google Scholar] [CrossRef]
- Aravind, K.R.; Raja, P.; Pérez-Ruiz, M. Task-based agricultural mobile robots in arable farming: A review. Span. J. Agric. Res. 2017, 15, e02R01. [Google Scholar] [CrossRef]
- Shaner, D.L.; Beckie, H.J. The future for weed control and technology. Pest Manag. Sci. 2014, 70, 1329–1339. [Google Scholar] [CrossRef] [PubMed]
- Araus, J.L.; Cairns, J.E. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Ball, D.; Ross, P.; English, A.; Milani, P.; Richards, D.; Bate, A.; Upcroft, B.; Wyeth, G.; Corke, P. Farm Workers of the Future: Vision-Based Robotics for Broad-Acre Agriculture. IEEE Robot. Autom. Mag. 2017, 24, 97–107. [Google Scholar] [CrossRef]
- Epée Missé, P.T.; Werner, A.; Almond, P. Developing automated and autonomous weed control methods on vegetable crops in New Zealand. SSRN 2020. [Google Scholar] [CrossRef]
- Schmitz, A.; Badgujar, C.; Mansur, H.; Flippo, D.; McCornack, B.; Sharda, A. Design of a Reconfigurable Crop Scouting Vehicle for Row Crop Navigation: A Proof-of-Concept Study. Sensors 2022, 22, 6203. [Google Scholar] [CrossRef]
- Chostner, B. See & spray: The next generation of weed control. Resour. Mag. 2017, 24, 4–5. Available online: https://elibrary.asabe.org/abstract.asp?aid=47805 (accessed on 13 August 2024).
- Vasconcelos, G.J.Q.; Costa, G.S.R.; Spina, T.V.; Pedrini, H. Low-Cost Robot for Agricultural Image Data Acquisition. Agriculture 2023, 13, 413. [Google Scholar] [CrossRef]
- Bangale, R.; Kumar, M. Robot-Based Weed Identification and Control System. In Precision Agriculture for Sustainability; Apple Academic Press: Cambridge, MA, USA, 2024; pp. 169–194. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003435228-11/robot-based-weed-identification-control-system-rashmi-bangale-mohit-kumar (accessed on 13 August 2024).
- Redbond, M. Robots-the future of agriculture. Int. Pest Control 2015, 57, 314. Available online: https://irtotrio.hu/wp-content/uploads/2020/11/IPC-Nov-Dec2015-final-lores.pdf#page=18 (accessed on 13 August 2024).
- Das, T.; Sen, S.; Ghosh, S.; Paramanik, B.; Dattaand, D.; Roy, A. Integrated Weed Management in Crops and Cropping Systems: Concept, Needs and Challenges. New Delhi Publ. 2021, 286. [Google Scholar] [CrossRef]
- Paulus, S.; Behmann, J.; Mahlein, A.-K.; Plümer, L.; Kuhlmann, H. Low-Cost 3D Systems: Suitable Tools for Plant Phenotyping. Sensors 2014, 14, 3001–3018. [Google Scholar] [CrossRef] [PubMed]
- Alchanatis, V.; Cohen, A.; Cohen, Y.; Levi, O.; Naor, A. Multimodal remote sensing for enhancing detection of spatial variability in agricultural fields. In Proceedings of the Spatial2 Conference: Spatial Data Methods for Environmental and Ecological Processes, Foggia, Italy, 1–2 September 2011; pp. 1–4. Available online: https://aisberg.unibg.it/retrieve/e40f7b84-0adc-afca-e053-6605fe0aeaf2/13.pdf (accessed on 13 August 2024).
- Duckett, T.; Pearson, S.; Blackmore, S.; Grieve, B.; Chen, W.-H.; Cielniak, G.; Cleaversmith, J.; Dai, J.; Davis, S.; Fox, C. Agricultural robotics: The future of robotic agriculture. arXiv 2018, arXiv:1806.06762. [Google Scholar] [CrossRef]
- Gómez-Candón, D. Remote imagery to assess water stress variability within the orchard. CABI Rev. 2020. [Google Scholar] [CrossRef]
Robot | Manufacturer | Crop | Features |
---|---|---|---|
See & Spray [41] | Blue River Technology | Soybeans, corn | Reduces herbicide application, precise weed targeting |
EcoRobotix [42] | EcoRobotix | Sugar beets, vegetables | Solar-powered, reduces chemical use, eco-friendly |
Dino [43] | Naïo Technologies | Carrots, lettuce | Autonomous navigation, reduces manual labor, precise weeding |
Titan [44] | FarmWise | Lettuce, spinach | AI-driven, eliminates need for herbicides, sustainable |
Robocrop [45] | Garford | Sugar beets, lettuce | High-resolution cameras, precise mechanical weeding |
Avo [46] | Ecorobotix | Soybeans, corn | Multispectral cameras, AI for precise targeting |
Ladybird [47] | University of Sydney | Spinach, lettuce | Machine learning for weed identification, autonomous weeding |
Feature | Spectral Sensing | Multispectral | Hyperspectral | NIR-Hyperspectral |
---|---|---|---|---|
Number of bands | Typically 1–3 bands (e.g., NIR or specific wavelength) | 3–10 bands | Hundreds of narrow bands across the electromagnetic spectrum | Hundreds of bands, focused on the NIR region |
Data volume | Low | Moderate | High | High |
Cost | Low | Moderate | High | High |
Complexity | Low | Moderate | High | High |
Accuracy | Moderate, limited to specific conditions | Higher than spectral, good for differentiating some weed species | Very high, capable of distinguishing even similar species | High; particularly effective in vegetation analysis |
Real-time processing | Suitable for real-time processing due to lower data volume | Possible but requires good computational resources | Challenging due to large data volume, typically requires offline processing | Challenging but more focused, reducing data volume slightly |
Sensitivity to environment | High (affected by light, soil moisture, etc.) | Moderate, but still sensitive to environmental factors | Less sensitive, but still affected by light and other conditions | Lower sensitivity, optimized for NIR reflectance in vegetation |
Field of application | Basic weed detection in controlled environments | Precision agriculture, broad-acre weed mapping, UAV applications | Advanced research, detailed weed stress analysis, species identification | Detection of moisture content, plant health, specific weed identification |
Integration with robotics | Easy to integrate, especially in low-cost systems | Often integrated with UAVs and ground robots for field mapping | Difficult to integrate due to complexity, used in high-end systems | Complex, but highly valuable in agricultural robotics |
Challenges | Environmental variability, limited spectral information | Calibration issues, overlapping spectral signatures | High cost, data overload, complex data analysis required | High cost, requires advanced algorithms, real-time processing |
Weeding Platform | Sensor Type, Model | Sensor Limitations |
---|---|---|
AgBot II [201] | LiDAR, SICK LMS111 | Affected by dust, fog, and reflective surfaces |
Naio Dino [202] | RGB, Basler ace acA2040-90uc | Sensitive to lighting conditions and shadows |
Rowbot [203] | Multispectral, MicaSense RedEdge-MX | Expensive and complex data processing required |
Blue River See & Spray [204] | RGB, Canon EOS 70D | Limited spectral range and sensitivity to light conditions |
EcoRobotix [205] | Hyperspectral, Headwall Photonics Nano-Hyperspec | High cost and requires complex data interpretation |
Ecorobotix AVO [206] | Multispectral, Sentera Quad | Expensive and requires significant computational resources |
Robovator [11] | NIR, Sentek Dynamics M7 | Limited by environmental conditions such as lighting |
F. Poulsen Engineering Robovator | LiDAR, Velodyne VLP-16 | Can be expensive and affected by weather conditions |
Bosch Deepfield Robotics BoniRob [207] | RGB-D, Intel RealSense D435 | Limited range and resolution; affected by lighting |
Weedmaster [208] | Thermal Camera, FLIR E5 | Less effective in extreme temperature variations and weather conditions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shamshiri, R.R.; Rad, A.K.; Behjati, M.; Balasundram, S.K. Sensing and Perception in Robotic Weeding: Innovations and Limitations for Digital Agriculture. Sensors 2024, 24, 6743. https://doi.org/10.3390/s24206743
Shamshiri RR, Rad AK, Behjati M, Balasundram SK. Sensing and Perception in Robotic Weeding: Innovations and Limitations for Digital Agriculture. Sensors. 2024; 24(20):6743. https://doi.org/10.3390/s24206743
Chicago/Turabian StyleShamshiri, Redmond R., Abdullah Kaviani Rad, Maryam Behjati, and Siva K. Balasundram. 2024. "Sensing and Perception in Robotic Weeding: Innovations and Limitations for Digital Agriculture" Sensors 24, no. 20: 6743. https://doi.org/10.3390/s24206743
APA StyleShamshiri, R. R., Rad, A. K., Behjati, M., & Balasundram, S. K. (2024). Sensing and Perception in Robotic Weeding: Innovations and Limitations for Digital Agriculture. Sensors, 24(20), 6743. https://doi.org/10.3390/s24206743