Decorated Electrode Surfaces with Nanostructures and Metal-Organic Frameworks as Transducers for Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Instrumentation and Procedures
2.2.1. Electrochemical Measurements
2.2.2. MOF Synthesis
2.2.3. Biochar Activation and Characterization
2.2.4. SPCE Modification
2.2.5. Modified SPCE Characterization
2.2.6. Real Sample Preparation
3. Results and Discussion
3.1. Characterization of Electrochemical Processes with Unmodified SPCEs
3.2. Modified SPCEs
3.2.1. Nanomaterials
3.2.2. MOFs
3.2.3. Biochar
3.3. Determination of Clotiapine in Etumine® with Modified SPCEs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Miranda Ferrari, A.; Rowley-Neale, S.J.; Banks, C.E. Screen-printed electrodes: Transitioning the laboratory in-to-the field. Talanta Open 2021, 3, 100032. [Google Scholar] [CrossRef]
- Singh, S.; Wang, J.; Cinti, S. Review—An Overview on Recent Progress in Screen-Printed Electroanalytical (Bio)Sensors. ECS Sens. Plus 2022, 1, 023401. [Google Scholar] [CrossRef]
- Osaki, S.; Saito, M.; Nagai, H.; Tamiya, E. Surface Modification of Screen-Printed Carbon Electrode through Oxygen Plasma to Enhance Biosensor Sensitivity. Biosensors 2024, 14, 165. [Google Scholar] [CrossRef] [PubMed]
- Kavya, K.V.; Vargheese, S.; Pattappan, D.; Rajendra Kumar, R.T.; Haldorai, Y. Screen-printed electrode modified by Au/NH2-MIL-125(Ti) composite for electrochemical sensing performance of gallic acid in green tea and urine samples. Chem. Phys. Lett. 2022, 807, 140074. [Google Scholar] [CrossRef]
- Paimard, G.; Ghasali, E.; Baeza, M. Screen-Printed Electrodes: Fabrication, Modification, and Biosensing Applications. Chemosensors 2023, 11, 113. [Google Scholar] [CrossRef]
- Trojanowicz, M. Impact of nanotechnology on design of advanced screen-printed electrodes for different analytical applications. Trends Anal. Chem. 2016, 84, 22–47. [Google Scholar] [CrossRef]
- Gusmão, R.; López-Puente, V.; Pastoriza-Santos, I.; Pérez-Juste, J.; Proenҫa, M.F.; Bento, F.; Geraldo, D.; Paiva, M.C.; González-Romero, E. Enhanced electrochemical sensing of polyphenols by an oxygen-mediated surface. RSC Adv. 2015, 5, 5024–5031. [Google Scholar] [CrossRef]
- Baradoke, A.; Pastoriza-Santos, I.; González-Romero, E. Screen-printed GPH electrode modified with Ru nanoplates and PoPD polymer film for NADH sensing: Design and characterization. Electrochim. Acta 2019, 300, 316–323. [Google Scholar] [CrossRef]
- Kaur, H.; Siwal, S.S.; Chauhan, G.; Saini, A.K.; Kumari, A.; Thakur, V.K. Recent advances in electrochemical-based sensors amplified with carbon-based nanomaterials (CNMs) for sensing pharmaceutical and food pollutants. Chemosphere 2022, 304, 135182. [Google Scholar] [CrossRef]
- Singh, B.; Fang, Y.; Johnston, C.T. A Fourier-Transform Infrared Study of Biochar Aging in Soils. Soil Sci. Soc. Am. J. 2016, 80, 613–622. [Google Scholar] [CrossRef]
- Cancelliere, R.; Cianciaruso, M.; Carbone, K.; Micheli, L. Biochar: A Sustainable Alternative in the Development of Electrochemical Printed Platforms. Chemosensors 2022, 10, 344. [Google Scholar] [CrossRef]
- Silva, R.M.; da Silva, A.D.; Camargo, J.R.; de Castro, B.S.; Meireles, L.M.; Silva, P.S.; Janegitz, B.C.; Silva, T.A. Carbon Nanomaterials-Based Screen-Printed Electrodes for Sensing Applications. Biosensors 2023, 13, 453. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Avilés, A.; Muelas-Ramos, V.; Bedia, J.; Rodriguez, J.J.; Belver, C. Thermal post-treatments to enhance the water stability of NH2-MIL-125(Ti). Catalysts 2020, 10, 603. [Google Scholar] [CrossRef]
- Gómez-Avilés, A.; Peñas-Garzón, M.; Bedia, J.; Dionysiou, D.D.; Rodríguez, J.J.; Belver, C. Mixed Ti-Zr metal-organic-frameworks for the photodegradation of acetaminophen under solar irradiation. Appl. Catal. B 2019, 253, 253–262. [Google Scholar] [CrossRef]
- Zhao, Y.; Cai, W.; Chen, J.; Miao, Y.; Bu, Y. A Highly Efficient Composite Catalyst Constructed from NH2-MIL-125(Ti) and Reduced Graphene Oxide for CO2 Photoreduction. Front. Chem. 2019, 7, 789. [Google Scholar] [CrossRef]
- Zhang, Y.; Selva Kumar, A.K.; Li, D.; Yang, M.; Compton, R.G. Nanoparticle- and Nanotube-Modified Electrodes: Response of Drop-Cast Surfaces. ChemElectroChem 2020, 7, 4614–4624. [Google Scholar] [CrossRef]
- Galandova, J.; Ziyatdinova, G.; Labuda, J. Disposable Electrochemical Biosensor with Multiwalled Carbon Nanotubes—Chitosan Composite Layer for the Detection of Deep DNA Damage. Anal. Sci. 2008, 24, 711–716. [Google Scholar] [CrossRef]
- Noguchi, H.K.; Kaur, S.; Krettli, L.M.; Singla, P.; McClements, J.; Snyder, H.; Crapnell, R.D.; Banks, C.E.; Novakovic, K.; Kaur, I.; et al. Rapid electrochemical detection of levodopa using polyaniline-modified screen-printed electrodes for the improved management of Parkinson’s disease. Phys. Med. 2022, 14, 100052. [Google Scholar] [CrossRef]
- Suhaimi, N.F.; Baharin, S.N.A.; Jamion, N.A.; Mohd Zain, Z.; Sambasevam, K.P. Polyaniline-chitosan modified on screen-printed carbon electrode for the electrochemical detection of perfluorooctanoic acid. Microchem. J. 2023, 188, 108502. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Kim, M. An Overview of Techniques in Enzyme Immobilization. Appl. Sci. Converg. Technol. 2017, 26, 157–163. [Google Scholar] [CrossRef]
- Bouden, S.; Bellakhal, N.; Chaussé, A.; Vautrin-Ul, C. Performances of carbon-based screen-printed electrodes modified by diazonium salts with various carboxylic functions for trace metal sensors. Electrochem. Commun. 2014, 41, 68–71. [Google Scholar] [CrossRef]
- Duan, W.; Cui, H.; Jia, X.; Huang, X. Occurrence and ecotoxicity of sulfonamides in the aquatic environment: A review. Sci. Total Environ. 2022, 820, 153178. [Google Scholar] [CrossRef] [PubMed]
- Andrade, H.N.; de Oliveira, J.F.; de Siniscalchi, L.A.B.; Costa, J.D.; da Fia, R. Global insight into the occurrence, treatment technologies and ecological risk of emerging contaminants in sanitary sewers: Effects of the SARS-CoV-2 coronavirus pandemic. Sci. Total Environ. 2024, 921, 171075. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.S.C.; Challis, J.K.; Ji, X.; Giesy, J.P.; Brinkmann, M. Impacts of wastewater effluents and seasonal trends on levels of antipsychotic pharmaceuticals in water and sediments from two cold-region rivers. Sci. Total Environ. 2022, 851, 158247. [Google Scholar] [CrossRef] [PubMed]
- Wronski, A.R.; Brooks, B.W. Global occurrence and aquatic hazards of antipsychotics in sewage influents, effluent discharges and surface waters. Environ. Pollut. 2023, 320, 121042. [Google Scholar] [CrossRef]
- Brenner, C.G.B.; Mallmann, C.A.; Arsand, D.R.; Mayer, F.M.; Martins, A.F. Determination of Sulfamethoxazole and Trimethoprim and Their Metabolites in Hospital Effluent. Clean 2011, 39, 28–34. [Google Scholar] [CrossRef]
- Sanusi, I.O.; Olutona, G.O.; Wawata, I.G.; Onohuean, H. Occurrence, environmental impact and fate of pharmaceuticals in groundwater and surface water: A critical review. Environ. Sci. Pollut. Res. 2023, 30, 90595–90614. [Google Scholar] [CrossRef]
- de Faria, L.V.; Lisboa, T.P.; da Silva Campos, N.; Alves, G.F.; Matos, M.A.C.; Matos, R.C.; Munoz, R.A.A. Electrochemical methods for the determination of antibiotic residues in milk: A critical review. Anal. Chim. Acta 2021, 1173, 338569. [Google Scholar] [CrossRef]
- Li, X.; Guo, W.; Liu, Z.; Wang, R.; Liu, H. Quinone-modified NH2-MIL-101(Fe) composite as a redox mediator for improved degradation of bisphenol A. J. Hazard. Mater. 2017, 324, 665–672. [Google Scholar] [CrossRef]
- Díez, A.M.; García-Ocampo, J.; Pazos, M.; Sanromán, M.Á.; Kolen´ko, Y.V. Structured organic frameworks as endocrine disruptor adsorbents suitable for Fenton regeneration and reuse. J. Environ. Chem. Eng. 2024, 12, 111820. [Google Scholar] [CrossRef]
- Solís, R.R.; Gómez-Avilés, A.; Belver, C.; Rodriguez, J.J.; Bedia, J. Microwave-assisted synthesis of NH2-MIL-125(Ti) for the solar photocatalytic degradation of aqueous emerging pollutants in batch and continuous tests. J. Environ. Chem. Eng. 2021, 9, 106230. [Google Scholar] [CrossRef]
- Kalinke, C.; Oliveira, P.R.; Oliveira, G.A.; Mangrich, A.S.; Marcolino-Junior, L.H.; Bergamini, M.F. Activated biochar: Preparation, characterization and electroanalytical application in an alternative strategy of nickel determination. Anal. Chim. Acta 2017, 983, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lin, Y.; Chen, Q. Organic-Phase Biosensors Based on the Entrapment of Enzymes within Poly(Ester-Sutfonic Acid) Coatings. Electroanalysis 1993, 5, 23–28. [Google Scholar] [CrossRef]
- Wang, J.; Golden, T.; Li, R. Cobalt Phthalocyanine/Cellulose Acetate Chemically Modified Electrodes for Electrochemical Detection in Flowing Streams. Multifunctional Operation Based upon the Coupling of Electrocatalysis and Permselectivity. Anal. Chem. 1988, 60, 1642–1645. [Google Scholar] [CrossRef] [PubMed]
- Catanante, G.; Mishra, R.K.; Hayat, A.; Marty, J.L. Sensitive analytical performance of folding based biosensor using methylene blue tagged aptamers. Talanta 2016, 153, 138–144. [Google Scholar] [CrossRef]
- Revenga-Parra, M.; Gómez-Anquela, C.; García-Mendiola, T.; Gonzalez, E.; Pariente, F.; Lorenzo, E. Grafted Azure A modified electrodes as disposable β-nicotinamide adenine dinucleotide sensors. Anal. Chim. Acta 2012, 747, 84–91. [Google Scholar] [CrossRef]
- Adamopoulos, N.D.; Tsierkezos, N.G.; Ntziouni, A.; Zhang, F.; Terrones, M.; Kordatos, K.V. Synthesis, characterization, and electrochemical performance of reduced graphene oxide decorated with Ag, ZnO, and AgZnO nanoparticles. Carbon 2023, 213, 118178. [Google Scholar] [CrossRef]
- Kauffmann, J.-M.; Vire, J.-C.; Patriarche, G.J. 644-Tentative correlation between the electrochemical oxidation of neuroleptics and their pharmacological properties. Bioelectrochem. Bioenerg. 1984, 12, 413–420. [Google Scholar] [CrossRef]
- Caruncho-Pérez, S.; Bernárdez, N.; Pazos, M.; Sanromán, M.Á.; González-Romero, E. Voltammetric Methodology for the Quality Control and Monitoring of Sulfamethoxazole Removal from Water; Department of Analytical and Food Chemistry, University of Vigo: Vigo, Spain, 2024; Submitted, under Review. [Google Scholar]
- Alberto, E.; Bastos-Arrieta, J.; Pérez-Ràfols, C.; Serrano, N.; Silvia Díaz-Cruz, M.; Manuel Díaz-Cruz, J. Voltammetric determination of sulfamethoxazole using commercial screen-printed carbon electrodes. Microchem. J. 2023, 193, 109125. [Google Scholar] [CrossRef]
- Kauffmann, J.; Laudet, A.; Virb, J.; Patriarche, J.G.; Christian, G.D. Voltammetric Oxidation of Pharmaceutical Organic Compounds at a New Modified Electrode: The Aluminum Graphite Spray-Covered Electrode. Microchem. J. 1983, 28, 357–362. [Google Scholar] [CrossRef]
- Bernalte, E.; Marín-Sánchez, C.; Pinilla-Gil, E.; Brett, C.M.A. Characterisation of screen-printed gold and gold nanoparticle-modified carbon sensors by electrochemical impedance spectroscopy. J. Electroanal. Chem. 2013, 709, 70–76. [Google Scholar] [CrossRef]
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical Impedance Spectroscopy—A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef] [PubMed]
- Koç, Y.; Morali, U.; Erol, S.; Avci, H. Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy. Turk. J. Chem. 2021, 45, 1895–1915. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.G.; Li, B.R.; Wang, Y.L.; Wu, C.C.; Chen, J.C. Application of aminobenzoic acid electrodeposited screen-printed carbon electrode in the beta-amyloid electrochemical impedance spectroscopy immunoassay. Talanta 2023, 254, 124154. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, D.; Pedrero, M.; Guo, Z.; Pingarrón, J.M.; Campuzano, S.; Zou, X. Advances and opportunities of polydopamine coating in biosensing: Preparation, functionality, and applications. Coord. Chem. Rev. 2024, 501, 215564. [Google Scholar] [CrossRef]
- Zalpour, N.; Roushani, M. A polydopamine imprinted array on a binder-free carbon cloth assembled by gold carbon quantum dots as a portable flexible 3D nano-electrochemical sensor for selective trace monitoring of orlistat (xenical). Microchem. J. 2023, 190, 108750. [Google Scholar] [CrossRef]
- Revenga-Parra, M.; García-Mendiola, T.; González-Costas, J.; González-Romero, E.; Marín, A.G.; Pau, J.L.; Pariente, F.; Lorenzo, E. Simple diazonium chemistry to develop specific gene sensing platforms. Anal. Chim. Acta 2014, 813, 41–47. [Google Scholar] [CrossRef]
- Jawhari, T.; Roid, A.; Casado, J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 1995, 33, 1561–1565. [Google Scholar] [CrossRef]
- Gouadec, G.; Colomban, P. Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Progress. Cryst. Growth Charact. Mater. 2007, 53, 1–56. [Google Scholar] [CrossRef]
Analyte | SPCE | ip (µA) | Ep (V) | W1/2 (V) | ip Improvement (%) |
---|---|---|---|---|---|
SMX | Unmodified | 6.861 | 0.759 | 0.095 | - |
MOF Ti | 12.442 | 0.804 | 0.125 | 81 | |
MOF Fe | 8.194 | 0.678 | 0.268 | 19 | |
CLT | Unmodified | 11.294 | 0.827 | 0.093 | - |
MOF Ti | 8.038 | 0.832 | 0.096 | −29 | |
MOF Fe | 16.053 | 0.852 | 0.087 | 42 |
SPCE | ip (µA) | Ep (V) | W1/2 (V) | ip Improvement (%) |
---|---|---|---|---|
Unmodified | 6.740 | 0.764 | 0.100 | - |
MOF Ti | 12.702 | 0.794 | 0.104 | 88 |
AQ | 7.883 | 0.729 | 0.102 | 17 |
MOF/AQ | 7.374 | 0.719 | 0.158 | 9 |
AQ/MOF | 6.434 | 0.719 | 0.138 | −4 |
CA | 1.732 | 0.789 | 0.116 | −74 |
MOF/CA | 0.783 | 0.724 | 0.216 | −88 |
CA/MOF | 2.215 | 0.814 | 0.204 | −67 |
Nafion | 11.552 | 0.694 | 0.107 | 71 |
MOF/Nafion | 8.047 | 0.698 | 0.137 | 19 |
Nafion/MOF | 9.514 | 0.698 | 0.134 | 41 |
Chitosan | 5.150 | 0.618 | 0.159 | −24 |
MOF/Chitosan | 9.961 | 0.799 | 0.117 | 48 |
Chitosan/MOF | 5.990 | 0.709 | 0.143 | −11 |
SPCE | ip (µA) | Ep (V) | W1/2 (V) | ip Improvement (%) |
---|---|---|---|---|
Unmodified | 6.801 | 0.749 | 0.096 | - |
MOF Ti | 11.962 | 0.794 | 0.100 | 76 |
MOF Ti/po-PD | 8.315 | 0.779 | 0.152 | 22 |
po-PD/MOF Ti | 10.614 | 0.694 | 0.246 | 56 |
MOF Fe | 8.369 | 0.784 | 0.160 | 23 |
MOF Fe/po-PD | 10.112 | 0.779 | 0.179 | 49 |
po-PD/MOF Fe | 10.081 | 0.759 | 0.184 | 48 |
Diazotization ATA | 6.404 | 0.764 | 0.117 | −6 |
Diazotization MOF Ti | 6.209 | 0.794 | 0.108 | −9 |
Diazotization MOF Fe | 6.384 | 0.764 | 0.112 | −6 |
SPCE | ip (µA) | Ep (V) | W1/2 (V) | ip Improvement (%) |
---|---|---|---|---|
Unmodified | 7.036 | 0.744 | 0.098 | - |
Biochar | 5.326 | 0.799 | 0.123 | −24 |
Biochar/AQ | 7.584 | 0.703 | 0.110 | 8 |
Biochar/CA | 3.258 | 0.769 | 0.103 | −54 |
Biochar/Nafion | 9.901 | 0.673 | 0.106 | 41 |
Biochar/Chitosan | 7.331 | 0.648 | 0.116 | 4 |
Activated biochar | 5.642 | 0.759 | 0.119 | −20 |
Activated biochar/AQ | 7.617 | 0.719 | 0.111 | 8 |
Activated biochar/CA | 2.574 | 0.779 | 0.112 | −63 |
Activated biochar/Nafion | 10.152 | 0.678 | 0.105 | 44 |
Activated biochar/Chitosan | 5.259 | 0.663 | 0.141 | −25 |
SPCE | Linear Range (µM) | Intercept (µA) | Slope (µA µM−1) | R2 | LOD (µM) | LOQ (µM) |
---|---|---|---|---|---|---|
Unmodified | 4.40–100.00 | 0.22 ± 0.04 | 0.091 ± 0.001 | 0.9996 | 1.32 | 4.40 |
MOF Fe | 4.81–100.00 | −0.03 ± 0.05 | 0.104 ± 0.001 | 0.9994 | 1.44 | 4.81 |
MWCNT | 6.45–100.00 | 0.06 ± 0.06 | 0.093 ± 0.001 | 0.9993 | 1.94 | 6.45 |
CNT-AuNP | 6.36–100.00 | 0.13 ± 0.07 | 0.110 ± 0.002 | 0.9990 | 1.91 | 6.36 |
SPCE | CLT Found (mg) | Recovery (%) | Relative Error (%) | RSD (%) |
---|---|---|---|---|
Unmodified | 41.8 ± 0.4 | 104 | 4.5 | 1.0 |
MOF Fe | 43.5 ± 0.4 | 109 | 8.8 | 0.9 |
MWCNT | 42.9 ± 0.4 | 107 | 7.2 | 0.9 |
CNT-AuNP | 43.0 ± 0.8 | 108 | 7.5 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruncho-Pérez, S.; Díez, A.M.; Prado-Comesaña, A.; Pazos, M.; Sanromán, M.Á.; González-Romero, E. Decorated Electrode Surfaces with Nanostructures and Metal-Organic Frameworks as Transducers for Sensing. Sensors 2024, 24, 6745. https://doi.org/10.3390/s24206745
Caruncho-Pérez S, Díez AM, Prado-Comesaña A, Pazos M, Sanromán MÁ, González-Romero E. Decorated Electrode Surfaces with Nanostructures and Metal-Organic Frameworks as Transducers for Sensing. Sensors. 2024; 24(20):6745. https://doi.org/10.3390/s24206745
Chicago/Turabian StyleCaruncho-Pérez, Sara, Aida M. Díez, Ana Prado-Comesaña, Marta Pazos, María Ángeles Sanromán, and Elisa González-Romero. 2024. "Decorated Electrode Surfaces with Nanostructures and Metal-Organic Frameworks as Transducers for Sensing" Sensors 24, no. 20: 6745. https://doi.org/10.3390/s24206745
APA StyleCaruncho-Pérez, S., Díez, A. M., Prado-Comesaña, A., Pazos, M., Sanromán, M. Á., & González-Romero, E. (2024). Decorated Electrode Surfaces with Nanostructures and Metal-Organic Frameworks as Transducers for Sensing. Sensors, 24(20), 6745. https://doi.org/10.3390/s24206745