Advancements and Challenges in Antenna Design and Rectifying Circuits for Radio Frequency Energy Harvesting
Abstract
:1. Introduction
2. Energy Harvesting System
2.1. History of Wireless Power Transfer
2.2. Technical Advancements and Challenges in Far-Field RF Energy Harvesting and Wireless Power Transfer
3. Antennas Design for RF Energy Harvesting System
3.1. Antennas Arrays for Rectenna Design
3.2. Enhancing Rectenna Antenna Performance with Metamaterials Design
3.2.1. Miniaturization of Antennas Using Metamaterial-Inspired Design
3.2.2. Bandwidth and Gain Enhancement Antenna Using Metamaterial-Inspired Designs
3.2.3. Circular Polarization of Antenna Using Metamaterial-Inspired Design
3.2.4. Metamaterial Enhancement of Isolation and Mutual Coupling Reduction in Antenna for Multi-Port Rectenna
4. Impedance Matching Network (IMN) of Antenna and Rectifier
5. Rectifier Design for Wireless Energy Scavenging/Wireless Power Transfer System
5.1. Circuit Design of CMOS Rectifier
5.2. Circuit Design of Schottky Diode Rectifier
Summary of Schottky Rectifier Radio Frequency Energy Harvesters
5.3. Research Challenges on Rectifier
5.3.1. Broadband Design Challenges
5.3.2. Rectifiers with Wide Power Range Challenges
5.3.3. Improving Power Conversion Efficiency (PCE)
5.3.4. Advanced Techniques and Tools
6. Far-Field Rectenna: Power Harvesting and Conversion Efficiency
7. Conclusions
Funding
Conflicts of Interest
List of Acronyms
Acronyms | Full Form |
RF, WEH | Radio Frequency, Wireless Energy Harvesting |
RFEH, WPT | RF Energy Harvesting, Wireless Power Transfer |
PCE, DC | Power Conversion Efficiency, Direct Current |
CMOS | Complementary Metal-Oxide-Semiconductor |
AC, Qi | Alternating Current, Charging Flow |
EM, RFID | Electromagnetic, RF Identification |
GSM, UMTS | Global System for Mobile, Universal Mobile Telecommunications System |
LoRaWAN | Long Range Wide Area Network |
TSOP, WLAN | Tapered Slot Patch, Wireless Local Area Network |
LTE, WiMAX | Long-Term Evolution, Wireless Microwave Access |
FR4, MIMO | Flame-Retardant Material, Multiple Input Multiple Output |
ISM, TD-LTE | Industrial, Scientific, Medical, Time Division LTE |
DNG, MNG | Double-Negative, Magnetic-Negative |
SNG, EPG | Single-Negative, Epsilon-Negative |
CRLH-TL, RH-TL | Composite Right/Left-Hand Transmission Line, Right-Handed |
FSS, CSRR | Frequency Selective Surface, Complementary Split-Ring Resonator |
IMN, CMOS-CCDD | Impedance Matching Network, CMOS Capacitive Coupled Device |
References
- Karthick Raghunath, K.; Koti, M.; Sivakami, R.; Vinoth Kumar, V.; NagaJyothi, G.; Muthukumaran, V. Utilization of IoT-assisted computational strategies in wireless sensor networks for smart infrastructure management. Int. J. Syst. Assur. Eng. Manag. 2022, 15, 123–130. [Google Scholar] [CrossRef]
- Khan, S.; Lee, W.-K.; Hwang, S.O. AEchain: A Lightweight Blockchain for IoT Applications. IEEE Consum. Electron. Mag. 2022, 11, 64–76. [Google Scholar] [CrossRef]
- Dash, D. Geometric Algorithm for Finding Time-Sensitive Data Gathering Path in Energy Harvesting Sensor Networks. IEEE Trans. Intell. Transp. Syst. 2022, 23, 7547–7556. [Google Scholar] [CrossRef]
- Kim, S.; Kim, B.; Shah, B.; Ullah, S.; Kim, K.I. Survey on communication for mobile sinks in wireless sensor networks: Mobility pattern perspective. J. Internet Technol. 2021, 22, 3. [Google Scholar] [CrossRef]
- Bhaskarwar, R.V.; Pete, D. Cross-Layer Design Approaches in Underwater Wireless Sensor Networks: A Survey. SN Comput. Sci. 2021, 2, 362. [Google Scholar] [CrossRef]
- Gupta, S.; Jana, P. Energy Efficient Clustering and Routing Algorithms for Wireless Sensor Networks: GA Based Approach. Wirel. Pers. Commun. 2015, 83, 2403–2423. [Google Scholar] [CrossRef]
- Rajagopalan, R.; Varshney, P. Data-aggregation techniques in sensor networks: A survey. IEEE Commun. Surv. Tutor. 2006. [Google Scholar] [CrossRef]
- Chen, D.; Li, R.; Xu, J.; Li, D.; Fei, C.; Yang, Y. Recent progress and development of radio frequency energy harvesting devices and circuits. Nano Energy 2023, 117, 108845. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, A. A survey on RF energy harvesting techniques for lifetime enhancement of wireless sensor networks. Sustain. Comput. Inform. Syst. 2023, 37, 100836. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.; Azpilicueta, L.; Naser-Moghadasi, M.; Akinsolu, M.; See, C.; Liu, B.; Abd-Alhameed, R.A.; Falcone, F. A Comprehensive Survey of ‘Metamaterial Transmission-Line Based Antennas: Design, Challenges, and Applications’. IEEE Access 2020, 8, 144778–144808. [Google Scholar] [CrossRef]
- Esmail, B.; Koziel, S.; Szczepanski, S. Overview of Planar Antenna Loading Metamaterials for Gain Performance Enhancement: The Two Decades of Progress. IEEE Access 2022, 10, 27381–27403. [Google Scholar] [CrossRef]
- Hussain, M.; Awan, W.; Alzaidi, M.; Hussain, N.; Ali, E.; Falcone, F. Metamaterials and Their Application in the Performance Enhancement of Reconfigurable Antennas: A Review. Micromachines 2023, 14, 349. [Google Scholar] [CrossRef]
- Chun, A.; Ramiah, H.; Mekhilef, S. Wide Power Dynamic Range CMOS RF-DC Rectifier for RF Energy Harvesting System: A Review. IEEE Access 2022, 10, 23948–23963. [Google Scholar] [CrossRef]
- Yildiz, F. Potential Ambient Energy-Harvesting Sources and Techniques. J. Technol. Stud. 2009, 35, 40–48. [Google Scholar] [CrossRef]
- Green, M.; Dunlop, E.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 56). Prog. Photovoltaics Res. Appl. 2020, 28, 629–638. [Google Scholar] [CrossRef]
- Stevens, J. Optimized Thermal Design of Small ΔT Thermoelectric Generators; SAE Technical Paper; SAE: Warrendale, PA, USA, 1999. [Google Scholar] [CrossRef]
- Mitcheson, P.; Green, T.; Yeatman, E.; Holmes, A. Architectures for Vibration-Driven Micropower Generators. J. Microelectromech. Syst. 2004, 13, 429–440. [Google Scholar] [CrossRef]
- Roundy, S.; Wright, P.; Pister, K. Micro-Electrostatic Vibration-to-Electricity Converters. In Proceedings of the Microelectromechanical Systems, ASME 2002 International Mechanical Engineering Congress and Exposition, New Orleans, LA, USA, 17–22 November 2002; pp. 487–496. [Google Scholar] [CrossRef]
- Piñuela, M.; Mitcheson, P.; Lucyszyn, S. Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans. Microw. Theory Tech. 2013, 61, 2715–2726. [Google Scholar] [CrossRef]
- Srivastava, V.; Sharma, A. A Coil Rectenna Array Design to Harvest All H-Field Components for Lateral Misalignment Tolerant Wireless Powering of Bio-Medical Implant Devices. IEEE J. Electromagn. RF Microwaves Med. Biol. 2024, 8, 59–67. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, S.; Jain, S.; Sharma, A. A Plug-in Type Integrated Rectenna Cell for Scalable RF Battery Using Wireless Energy Harvesting System. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 98–101. [Google Scholar] [CrossRef]
- Samal, P.; Chen, S.; Fumeaux, C. Wearable Textile Multiband Antenna for WBAN Applications. IEEE Trans. Antennas Propag. 2023, 71, 1391–1402. [Google Scholar] [CrossRef]
- Kiourti, A.; Nikita, K. A review of implantable patch antennas for biomedical telemetry: Challenges and solutions. IEEE Antennas Propag. Mag. 2012, 54, 210–228. [Google Scholar] [CrossRef]
- Zada, M.; Shah, I.; Nasir, J.; Basir, A.; Yoo, H. Empowering Remote Patient Monitoring with a Dual-Band Implantable Rectenna System for Wireless Power and Data Transfer. IEEE Trans. Antennas Propag. 2023, 71, 9509–9522. [Google Scholar] [CrossRef]
- Dibner, B. Oersted and the discovery of electromagnetism. Electr. Eng. 2013, 80. [Google Scholar] [CrossRef]
- Levin, M.; Miller, M. Maxwell’s ‘Treatise On Electricity and Magnetism’. Sov. Phys.-Uspekhi 1981, 24, 904. [Google Scholar] [CrossRef]
- Janik, A. Heinrich hertz: Classical Physicist, Modern Philosopher. Davis Baird, R. I. G. Hughes, Alfred Nordmann. Isis 2000, 91. [Google Scholar] [CrossRef]
- Carlson, W.; Wenaas, E. Tesla: Inventor of the electrical age. IEEE Technol. Soc. Mag. 2014, 33, 12–15. [Google Scholar] [CrossRef]
- Shinohara, N. History and Innovation of Wireless Power Transfer via Microwaves. IEEE J. Microw. 2021, 1, 218–228. [Google Scholar] [CrossRef]
- Surender, D.; Khan, T.; Talukdar, F.; Antar, Y. Rectenna Design and Development Strategies for Wireless Applications: A Review. IEEE Antennas Propag. Mag. 2022, 64, 16–29. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, J.; Liang, N.; Wu, S.; Wang, J. Analysis of WiTricity corporation’s wireless charging patents. Gaojishu Tongxin/Chinese High Technol. Lett. 2016, 26. [Google Scholar] [CrossRef]
- Theodoridis, M. Effective capacitive power transfer. IEEE Trans. Power Electron. 2012, 27, 4906–4913. [Google Scholar] [CrossRef]
- Sanislav, T.; Mois, G.; Zeadally, S.; Folea, S. Energy Harvesting Techniques for Internet of Things (IoT). IEEE Access 2021, 9, 39530–39549. [Google Scholar] [CrossRef]
- Asiful Huda, S.; Arafat, M.; Moh, S. Wireless Power Transfer in Wirelessly Powered Sensor Networks: A Review of Recent Progress. Sensors 2022, 22, 2952. [Google Scholar] [CrossRef]
- Cho, Y.; Lee, S.; Kim, D.H.; Kim, H.; Song, C.; Kong, S.; Park, J.; Seo, C.; Kim, J. Thin Hybrid Metamaterial Slab with Negative and Zero Permeability for High Efficiency and Low Electromagnetic Field in Wireless Power Transfer Systems. IEEE Trans. Electromagn. Compat. 2018, 60, 1001–1009. [Google Scholar] [CrossRef]
- FCC Rules for Unlicensed Wireless Equipment Operating in the ISM Bands. 2021. Available online: https://Afar.Net/Tutorials/Fcc-Rules/ (accessed on 20 July 2024).
- Soyata, T.; Copeland, L.; Heinzelman, W. RF Energy Harvesting for Embedded Systems: A Survey of Tradeoffs and Methodology. IEEE Circuits Syst. Mag. 2016, 16, 22–57. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Liu, X. Circularly Polarized Implantable Antenna for 915 MHz ISM-Band Far-Field Wireless Power Transmission. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 373–376. [Google Scholar] [CrossRef]
- Kim, J.; Cho, S.; Kim, H.J.; Choi, J.W.; Jang, J.; Choi, J. Exploiting the Mutual Coupling Effect on Dipole Antennas for RF Energy Harvesting. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1301–1304. [Google Scholar] [CrossRef]
- Zeng, M.; Andrenko, A.; Liu, X.; Li, Z.; Tan, H. A Compact Fractal Loop Rectenna for RF Energy Harvesting. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2424–2427. [Google Scholar] [CrossRef]
- Kamoda, H.; Kitazawa, S.; Kukutsu, N.; Kobayashi, K. Loop antenna over artificial magnetic conductor surface and its application to dual-band RF energy harvesting. IEEE Trans. Antennas Propag. 2015, 63, 4408–4417. [Google Scholar] [CrossRef]
- Schaubert, D.; Kasturi, S.; Boryssenko, A.; Elsallal, W. Vivaldi antenna arrays for wide bandwidth and electronic scanning. In Proceedings of the IET Seminar Digest, Scotland, UK, 11–16 November 2007; Volume 2007. [Google Scholar] [CrossRef]
- Yadav, H.; Ray, K.; Gupta, M. Differential multiresonator stacked microstrip antenna for wireless energy harvesting. Int. J. RF Microw. Comput.-Aided Eng. 2021, 31, e22828. [Google Scholar] [CrossRef]
- Anandkumar, D.; Sangeetha, R. Design and analysis of aperture coupled micro strip patch antenna for radar applications. Int. J. Intell. Netw. 2020, 1, 141–147. [Google Scholar] [CrossRef]
- Amer, A.; Sapuan, S.; Nasimuddin, N.; Alphones, A.; Zinal, N. A Comprehensive Review of Metasurface Structures Suitable for RF Energy Harvesting. IEEE Access 2020, 8, 76433–76452. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, Y.; Chiu, C.Y.; Murch, R. An Ambient RF Energy Harvesting System Where the Number of Antenna Ports Is Dependent on Frequency. IEEE Trans. Microw. Theory Tech. 2019, 67, 3821–3832. [Google Scholar] [CrossRef]
- Balanis, C. Antenna Theory: Analysis and Design, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Mugitani, A.; Sakai, N.; Hirono, A.; Noguchi, K.; Itoh, K. Harmonic Reaction Inductive Folded Dipole Antenna for Direct Connection with Rectifier Diodes. IEEE Access 2022, 10, 53433–53442. [Google Scholar] [CrossRef]
- Boursianis, A.; Papadopoulou, M.; Pierezan, J.; Mariani, V.; Coelho, L.; Sarigiannidis, P.; Koulouridis, S.; Goudos, S.K. Multiband Patch Antenna Design Using Nature-Inspired Optimization Method. IEEE Open J. Antennas Propag. 2021, 2, 151–162. [Google Scholar] [CrossRef]
- Liu, P.; Jiang, W.; Hu, W.; Sun, S.; Gong, S. Wideband Multimode Filtering Circular Patch Antenna. IEEE Trans. Antennas Propag. 2021, 69, 7249–7259. [Google Scholar] [CrossRef]
- Biswas, B.; Ghatak, R.; Poddar, D. UWB monopole antenna with multiple fractal slots for band-notch characteristic and integrated Bluetooth functionality. J. Electromagn. Waves Appl. 2015, 29, 1593–1609. [Google Scholar] [CrossRef]
- Midya, M.; Bhattacharjee, S.; Mitra, M. Broadband Circularly Polarized Planar Monopole Antenna with G-Shaped Parasitic Strip. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 581–585. [Google Scholar] [CrossRef]
- Sabhan, D.; Nesamoni, V.; Thangappan, J. An Efficient 2.45 GHz Spiral Rectenna without a Matching Circuit for RF Energy Harvesting. Wirel. Pers. Commun. 2021, 119, 713–726. [Google Scholar] [CrossRef]
- Song, M.; Zhang, X.; Wang, Z.; Xu, D.; Loh, T.; Gao, S. 3D-printed Spiral Inverted Ridge Circularly Polarized Horn Antenna with One Octave Bandwidth. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 3018–3022. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, S.; Xu, H. Compact Collinear Quasi-Yagi Antenna Array for Wireless Energy Harvesting. IEEE Access 2020, 8, 35308–35317. [Google Scholar] [CrossRef]
- Soboll, P.; Wienstroer, V.; Kronberger, R. Stacked Yagi-Uda Array for 2.45-GHz Wireless Energy Harvesting. IEEE Microw. Mag. 2015, 16, 67–73. [Google Scholar] [CrossRef]
- Nasimuddin; Esselle, K.; Verma, A. Wideband high-gain circularly polarized stacked microstrip antennas with an optimized C-type feed and a short horn. IEEE Trans. Antennas Propag. 2008, 56, 578–581. [Google Scholar] [CrossRef]
- Pereira, E.; Paz, H.; Silva, V.; Cambero, E.; Casella, I.; Capovilla, C. An Antipodal Vivaldi Antenna with Elliptical Slots for Low-Cost Rectenna Applications. J. Circuits Syst. Comput. 2021, 30, 2150248. [Google Scholar] [CrossRef]
- Shi, Y.; Fan, Y.; Li, Y.; Yang, L.; Wang, M. An efficient broadband slotted rectenna for wireless power transfer at LTE band. IEEE Trans. Antennas Propag. 2019, 67, 814–822. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, J.; Li, M.; Sun, D.; Guo, L. A MIMO Dielectric Resonator Antenna with Improved Isolation for 5G mm-Wave Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 747–751. [Google Scholar] [CrossRef]
- Bhatt, K.; Kumar, S.; Kumar, P.; Tripathi, C. Highly Efficient 2.4 and 5.8 GHz Dual-Band Rectenna for Energy Harvesting Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2637–2641. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, Y.; Zhang, C.; Yang, X.; Yang, X.X.; Tan, C. Compact Multiband Wireless Energy Harvesting Based Battery-Free Body Area Networks Sensor for Mobile Healthcare. IEEE J. Electromagn. RF Microwaves Med. Biol. 2018, 2, 109–115. [Google Scholar] [CrossRef]
- Yaseen, R.; Naji, D.; Shakir, A. Optimization Design Methodology of Broadband or Multiband Antenna for RF Energy Harvesting Applications. Prog. Electromagn. Res. B 2021, 93, 169–194. [Google Scholar] [CrossRef]
- Chandravanshi, S.; Sarma, S.S.; Akhtar, M. Design of Triple Band Differential Rectenna for RF Energy Harvesting. IEEE Trans. Antennas Propag. 2018, 66, 2716–2726. [Google Scholar] [CrossRef]
- Khemar, A.; Kacha, A.; Takhedmit, H.; Abib, G. Design and experiments of a dual-band rectenna for ambient RF energy harvesting in urban environments. IET Microwaves Antennas Propag. 2018, 12, 49–55. [Google Scholar] [CrossRef]
- Singh, N.; Kanaujia, B.; Beg, M.; Mainuddin; Kumar, S.; Choi, H.; Kim, K. Low profile multiband rectenna for efficient energy harvesting at microwave frequencies. Int. J. Electron. 2019, 106, 2057–2071. [Google Scholar] [CrossRef]
- Jie, A.; Nasimuddin, N.; Karim, M.; Chandrasekaran, K. A dual-band efficient circularly polarized rectenna for RF energy harvesting systems. Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, e21665. [Google Scholar] [CrossRef]
- Fang, Y.; Wu, L.; Qiu, L.; Zhang, Y. A Method of Introducing Coupling Null by Shorting Pins for Stacked Microstrip Patch Antenna Array. IEEE Trans. Antennas Propag. 2022, 70, 6030–6035. [Google Scholar] [CrossRef]
- Engheta, N. An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability. IEEE Antennas Wirel. Propag. Lett. 2002, 1, 10–13. [Google Scholar] [CrossRef]
- Li, M.; Zhong, B.; Cheung, S. Isolation enhancement for MIMO patch antennas using near-field resonators as coupling-mode transducers. IEEE Trans. Antennas Propag. 2019, 67, 755–764. [Google Scholar] [CrossRef]
- He, Y.; Huang, W.; He, Z.; Zhang, L.; Gao, X.; Zeng, Z. A Novel Cross-Band Decoupled Shared-Aperture Base Station Antenna Array Unit for 5G Mobile Communications. IEEE Open J. Antennas Propag. 2022, 3, 583–593. [Google Scholar] [CrossRef]
- Lu, X.; Chen, Y.; Guo, S.; Yang, S. An Electromagnetic-Transparent Cascade Comb Dipole Antenna for Multi-Band Shared-Aperture Base Station Antenna Array. IEEE Trans. Antennas Propag. 2022, 70, 2750–2759. [Google Scholar] [CrossRef]
- Chang, Y.; Chu, Q. Ferrite-Loaded Dual-Polarized Antenna for Decoupling of Multiband Multiarray Antennas. IEEE Trans. Antennas Propag. 2021, 69, 7419–7426. [Google Scholar] [CrossRef]
- Qi, X.; Xu, Z.; Li, H. High efficiency 2-D Multi-Beam Rectenna Based on Gain Enhanced Patch Array. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 2537–2541. [Google Scholar] [CrossRef]
- Wu, F.; Luk, K. Circular Polarization and Reconfigurability of Fabry-Pérot Resonator Antenna Through Metamaterial-Loaded Cavity. IEEE Trans. Antennas Propag. 2019, 67, 2196–2208. [Google Scholar] [CrossRef]
- Fakharian, M. A high gain wideband circularly polarized rectenna with wide ranges of input power and output load. Int. J. Electron. 2022, 109, 83–99. [Google Scholar] [CrossRef]
- Song, C.; Lu, P.; Shen, S. Highly Efficient Omnidirectional Integrated Multiband Wireless Energy Harvesters for Compact Sensor Nodes of Internet-of-Things. IEEE Trans. Ind. Electron. 2021, 68, 8128–8140. [Google Scholar] [CrossRef]
- Ali, T.; Pathan, S.; Biradar, R. Multiband, frequency reconfigurable, and metamaterial antennas design techniques: Present and future research directions. Internet Technol. Lett. 2018, 1, e19. [Google Scholar] [CrossRef]
- Yang, P.; Dang, R.; Li, L. Dual-Linear-to-Circular Polarization Converter Based Polarization-Twisting Metasurface Antenna for Generating Dual Band Dual Circularly Polarized Radiation in Ku-Band. IEEE Trans. Antennas Propag. 2022, 70, 9877–9881. [Google Scholar] [CrossRef]
- Maslovski, S.; Tretyakov, S.; Belov, P. Wire media with negative effective permittivity: A quasi-static model. Microw. Opt. Technol. Lett. 2002, 35, 47–51. [Google Scholar] [CrossRef]
- Marques, R.; Mesa, F.; Martel, J.; Medina, F. Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design—Theory and experiments. IEEE Trans. Antennas Propag. 2003, 51, 2572–2581. [Google Scholar] [CrossRef]
- Caloz, C.; Itoh, T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Kumar, P.; Ali, T.; Pai, M. Electromagnetic metamaterials: A new paradigm of antenna design. IEEE Access 2021, 9, 18722–18751. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, Y. Compact Low-Profile Dual Band Metamaterial Antenna for Body Centric Communications. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 863–866. [Google Scholar] [CrossRef]
- Li, M.; Luk, K.; Ge, L.; Zhang, K. Miniaturization of Magnetoelectric Dipole Antenna by Using Metamaterial Loading. IEEE Trans. Antennas Propag. 2016, 64, 4914–4918. [Google Scholar] [CrossRef]
- Abdalla, M.; Fouad, M.; Elregeily, H.; Mitkees, A. Wideband negative permittivity metamaterial for size reduction of stopband filter in antenna applications. Prog. Electromagn. Res. C 2012, 25, 55–66. [Google Scholar] [CrossRef]
- Juan, Y.; Yang, W.; Che, W. Miniaturized Low-Profile Circularly Polarized Metasurface Antenna Using Capacitive Loading. IEEE Trans. Antennas Propag. 2019, 67, 3527–3532. [Google Scholar] [CrossRef]
- Gheethan, A.; Herzig, P.; Mumcu, G. Compact 2 × 2 coupled double loop GPS antenna array loaded with broadside coupled split ring resonators. IEEE Trans. Antennas Propag. 2013, 61, 3000–3008. [Google Scholar] [CrossRef]
- Nahar, T.; Rawat, S. Survey of various bandwidth enhancement techniques used for 5G antennas. Int. J. Microw. Wirel. Technol. 2022, 14, 204–224. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J. Design of Miniaturized High Gain Bow-Tie Antenna. IEEE Trans. Antennas Propag. 2022, 70, 738–743. [Google Scholar] [CrossRef]
- Al-Bawri, S.; Islam, M.; Wong, H.; Jamlos, M.; Narbudowicz, A.; Jusoh, M.; Sabapathy, T.; Islam, M.T. Metamaterial cell-based superstrate towards bandwidth and gain enhancement of quad-band CPW-fed antenna for wireless applications. Sensors 2020, 20, 457. [Google Scholar] [CrossRef]
- Zada, M.; Shah, I.; Yoo, H. Metamaterial-Loaded Compact High-Gain Dual-Band Circularly Polarized Implantable Antenna System for Multiple Biomedical Applications. IEEE Trans. Antennas Propag. 2020, 68, 1140–1144. [Google Scholar] [CrossRef]
- Bakhtiari, A. Investigation of Enhanced Gain Miniaturized Patch Antenna Using Near Zero Index Metamaterial Structure Characteristics. IETE J. Res. 2022, 68, 1312–1319. [Google Scholar] [CrossRef]
- Tang, M.; Ziolkowski, R. Frequency-Agile, Efficient, Circularly Polarized, Near-Field Resonant Antenna: Designs and Measurements. IEEE Trans. Antennas Propag. 2015, 63, 5203–5209. [Google Scholar] [CrossRef]
- Dey, S.; Dey, S.; Koul, S. Isolation Improvement of MIMO Antenna Using Novel EBG and Hair-Pin Shaped DGS at 5G Millimeter Wave Band. IEEE Access 2021, 9, 162820–162834. [Google Scholar] [CrossRef]
- Selvaraju, R.; Jamaluddin, M.; Kamarudin, M.; Nasir, J.; Dahri, M. Mutual coupling reduction and pattern error correction in a 5G beamforming linear array using CSRR. IEEE Access 2018, 6, 65922–65934. [Google Scholar] [CrossRef]
- Qamar, Z.; Naeem, U.; Khan, S.; Chongcheawchamnan, M.; Shafique, M. Mutual Coupling Reduction for High-Performance Densely Packed Patch Antenna Arrays on Finite Substrate. IEEE Trans. Antennas Propag. 2016, 64, 1653–1660. [Google Scholar] [CrossRef]
- Haykin, S. Communication Systems, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Mallik, A.; Kundu, S. Design of a novel dual-band microstrip patch antenna operating at 2.45 GHz and 2.84 GHz with practical implementation. In Proceedings of the 16th Int’l Conf. Computer and Information Technology, Khulna, Bangladesh, 8–10 March 2014; pp. 40–45. [Google Scholar] [CrossRef]
- Wyndrum, R. Microwave filters, impedance-matching networks, and coupling structures. Proc. IEEE 1965, 53, 766. [Google Scholar] [CrossRef]
- Keshavarz, R.; Shariati, N. Highly Sensitive and Compact Quad-Band Ambient RF Energy Harvester. IEEE Trans. Ind. Electron. 2022, 69, 3609–3621. [Google Scholar] [CrossRef]
- Eroglu, A. RF/Microwave Engineering and Applications in Energy Systems; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Mohan, A.; Mondal, S. An Impedance Matching Strategy for Micro-Scale RF Energy Harvesting Systems. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 1458–1462. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, B.; Shi, W.; Mao, J. Low-Profile Broadband Plasma Antenna for Naval Communications in VHF and UHF Bands. IEEE Trans. Antennas Propag. 2020, 68, 4271–4282. [Google Scholar] [CrossRef]
- Lauder, D.; Sun, Y. Design Considerations of Antennas and Adaptive Impedance Matching Networks for RF Energy Harvesting. In Proceedings of the 2020 European Conference on Circuit Theory and Design (ECCTD), Sofia, Bulgaria, 7–10 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Jabbar, H.; Song, Y.; Jeong, T. RF energy harvesting system and circuits for charging of mobile devices. IEEE Trans. Consum. Electron. 2010, 56, 247–253. [Google Scholar] [CrossRef]
- Chong, G.; Ramiah, H.; Yin, J.; Rajendran, J.; Wong, W.; Mak, P.I.; Martins, R. Ambient RF energy harvesting system: A review on integrated circuit design. Analog Integr. Circuits Signal Process. 2018, 97, 515–531. [Google Scholar] [CrossRef]
- Barton, T.; Gordonson, J.; Perreault, D. Transmission line resistance compression networks for microwave rectifiers. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Tampa, FL, USA, 1–6 June 2014. [Google Scholar] [CrossRef]
- Khan, D.; Oh, S.; Shehzad, K.; Basim, M.; Verma, D.; Pu, Y.; Lee, M.; Hwang, K.C.; Yang, Y.; Lee, K.-Y. An Efficient Reconfigurable RF-DC Converter with Wide Input Power Range for RF Energy Harvesting. IEEE Access 2020, 8, 79310–79318. [Google Scholar] [CrossRef]
- Li, X.; Lu, Y.; Martins, R. A 200 MHz Passive Rectifier with Active-Static Hybrid V TH Compensation Obtaining 8% PCE Improvement. IEEE Trans. Power Electron. 2023, 38, 5655–5658. [Google Scholar] [CrossRef]
- Akram, M.; Ha, S. A 434-MHz Bootstrap Rectifier with Dynamic VTH Compensation for Wireless Biomedical Implants. IEEE Trans. Power Electron. 2023, 38, 1423–1428. [Google Scholar] [CrossRef]
- Karami, M.; Moez, K. Systematic Co-Design of Matching Networks and Rectifiers for CMOS Radio Frequency Energy Harvesters. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 3238–3251. [Google Scholar] [CrossRef]
- Lau, W.; Ho, H.; Siek, L. Deep Neural Network (DNN) Optimized Design of 2.45 GHz CMOS Rectifier with 73.6% Peak Efficiency for RF Energy Harvesting. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 4322–4333. [Google Scholar] [CrossRef]
- Chong, G.; Ramiah, H.; Yin, J.; Rajendran, J.; Mak, P.I.; Martins, R. A Wide-PCE-Dynamic-Range CMOS Cross-Coupled Differential-Drive Rectifier for Ambient RF Energy Harvesting. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 1743–1747. [Google Scholar] [CrossRef]
- Almansouri, A.; Ouda, M.; Salama, K. A CMOS RF-to-DC Power Converter with 86% Efficiency and −19.2-dBm Sensitivity. IEEE Trans. Microw. Theory Tech. 2018, 66, 2409–2415. [Google Scholar] [CrossRef]
- Abouzied, M.; Ravichandran, K.; Sanchez-Sinencio, E. A Fully Integrated Reconfigurable Self-Startup RF Energy-Harvesting System with Storage Capability. IEEE J. Solid-State Circuits 2017, 52, 704–719. [Google Scholar] [CrossRef]
- Cheng, L.; Ki, W.; Tsui, C. A 6.78-MHz Single-Stage Wireless Power Receiver Using a 3-Mode Reconfigurable Resonant Regulating Rectifier. IEEE J. Solid-State Circuits 2017, 52, 1412–1423. [Google Scholar] [CrossRef]
- Zhao, F.; Inserra, D.; Gao, G.; Huang, Y.; Li, J.; Wen, G. High-Efficiency Microwave Rectifier with Coupled Transmission Line for Low-Power Energy Harvesting and Wireless Power Transmission. IEEE Trans. Microw. Theory Tech. 2021, 69, 916–925. [Google Scholar] [CrossRef]
- Shen, S.; Chiu, C.; Murch, R. Multiport Pixel Rectenna for Ambient RF Energy Harvesting. IEEE Trans. Antennas Propag. 2018, 66, 644–656. [Google Scholar] [CrossRef]
- Kasar, Ö.; Gözel, M.; Kahriman, M. Analysis of rectifier stage number and load resistance in an RF energy harvesting circuit. Microw. Opt. Technol. Lett. 2020, 62, 1542–1547. [Google Scholar] [CrossRef]
- Wagih, M.; Hilton, G.; Weddell, A.; Beeby, S. Broadband millimeter-wave textile-based flexible rectenna for wearable energy harvesting. IEEE Trans. Microw. Theory Tech. 2020, 68, 4960–4972. [Google Scholar] [CrossRef]
- Oh, T.; Lim, T.; Lee, Y. A Self-Matching Rectifier Based on an Artificial Transmission Line for Enhanced Dynamic Range. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 2225–2234. [Google Scholar] [CrossRef]
- Quddious, A.; Zahid, S.; Tahir, F.; Antoniades, M.; Vryonides, P.; Nikolaou, S. Dual-Band Compact Rectenna for UHF and ISM Wireless Power Transfer Systems. IEEE Trans. Antennas Propag. 2021, 69, 2392–2397. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Su, Y.; Jiang, X.; Zhang, C.; Wang, L.; Cheng, Q. Efficiency Enhanced Seven-Band Omnidirectional Rectenna for RF Energy Harvesting. IEEE Trans. Antennas Propag. 2022, 70, 8473–8484. [Google Scholar] [CrossRef]
- Gozel, M.; Kahriman, M.; Kasar, O. Design of an efficiency-enhanced Greinacher rectifier operating in the GSM 1800 band by using rat-race coupler for RF energy harvesting applications. Int. J. Microw.-Comput.-Aided Eng. 2018, 29, e21621. [Google Scholar] [CrossRef]
- Gyawali, B.; Thapa, S.; Barakat, A.; Yoshitomi, K.; Pokharel, R. Analysis and design of diode physical limit bandwidth efficient rectification circuit for maximum flat efficiency, wide impedance, and efficiency bandwidths. Sci. Rep. 2021, 11, 19941. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Xue, Q. Dual-Band Transmission-Line Resistance Compression Network and Its Application to Rectifiers. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 119–132. [Google Scholar] [CrossRef]
- Khan, W.; Raad, R.; Tubbal, F.; Theoharis, P.; Iranmanesh, S. RF Energy Harvesting Using Multidirectional Rectennas: A Review. IEEE Sens. J. 2024, 24, 18762–18790. [Google Scholar] [CrossRef]
- Ding, S.; Koulouridis, S.; Pichon, L. Implantable Wireless Transmission Rectenna System for Biomedical Wireless Applications. IEEE Access 2020, 8, 195551–195558. [Google Scholar] [CrossRef]
- Yang, Y.; Yeo, J.; Priya, S. Harvesting Energy from the Counterbalancing (Weaving) Movement in Bicycle Riding. Sensors 2012, 12, 10248–10258. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Sun, S.; Xu, H.; Sun, H. Grid-Array Rectenna with Wide Angle Coverage for Effectively Harvesting RF Energy of Low Power Density. IEEE Trans. Microw. Theory Tech. 2019, 67, 402–413. [Google Scholar] [CrossRef]
- Deng, W.; Wang, S.; Yang, B.; Zheng, S. A Multibeam Ambient Electromagnetic Energy Harvester with Full Azimuthal Coverage. IEEE Internet Things J. 2022, 9, 8925–8934. [Google Scholar] [CrossRef]
- Cai, X.; Geyi, W.; Guo, Y. A Compact Rectenna with Flat-Top Angular Coverage for RF Energy Harvesting. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1307–1311. [Google Scholar] [CrossRef]
- Lee, D.J.; Lee, S.J.; Hwang, I.J.; Lee, W.S.; Yu, J.W. Hybrid Power Combining Rectenna Array for Wide Incident Angle Coverage in RF Energy Transfer. IEEE Trans. Microw. Theory Tech. 2017, 65, 3409–3418. [Google Scholar] [CrossRef]
Type of EH | Solar [15] | Thermal [16] | Wind [17] | Piezoelectric [18] | RF [19] |
---|---|---|---|---|---|
Power Source | Sun | Solar, equipment malfunctions, and physical attrition | Airspeed | Fluctuations in strength and oscillations | Broadcasting channels, cellular networks, and infrastructure |
Access/Availability | Sunlight hours (4–8) | Ongoing system operations | Weather-dependent | Based on activity | Daily |
Scavenging process | Photovoltaic/solar cell | Temperature, photoelectric effect | Motor drive, wind turbine | Piezoelectric devices with power electronics | Rectenna |
Avg. Power density | 100 W/cm2 | 60 W/cm2 | 177 W/cm2 | 250 W/cm2 | 40 W/cm2 |
Features | Hard to manage | Unmanageable, hard to predict | Unmanageable, unpredictable | Manageable | Somewhat manageable |
Efficiency | 11.7–26.7% | 5–15% | - | 5–30% | 0.4–50% |
Uses | External IoT devices, hubs | Body sensors | IoT sensors, base stations | Wearables, sensors | RFID, wearables |
Merits | Abundant energy, tech progress | Small-scale harvesters | Energy from light wind | High efficiency, stable voltage output | Compact, available circuits |
Demerits | Weather-dependent, large area needed | Thermal compatibility, high power need | Availability varies, bulky systems | Expensive, material-dependent | Interference affects power, signal loss |
Types of Wireless Power Transfer | Field Region | Design Method | Effective Distance | Efficiency | Uses | Merits | Di-Merits |
---|---|---|---|---|---|---|---|
RF Harvesting [8] | Far-Field | Antennas | Depends on frequency, works over meters to kilometers. | 1% to 85% | Low-power devices, body wireless sensors, wearables | Low radiative effect due to small RF density | High RF can be hazardous, low efficiency |
Inductive Coupling [33] | Near-field, non-radiative | Coils | Ranges from mm to cm | 10–60% at 15–500 KHz | Mobiles, cards, recharge stations | Easy to implement and safe | Limited range, heating, alignment issues |
Magnetic Resonance Coupling [34] | Near-Field | Resonators | Several millimeters to several meters | 20% to 90% at 50 cm to 3 m | Wireless charging, electric cars, mid-range applications | Charges multiple devices efficiently, even with misalignment | Limited range and complexity hinder mobile use |
Antenna | Methodology/Substrate | Frequency | Size | Gain (dBi) | RF-DC Efficiency | Ref. |
---|---|---|---|---|---|---|
Slot | Star antenna on F4B | 2.45 GHz 5.8 GHz | 133 × 93 mm2 | 1.48 [email protected] GHz 3.83 [email protected] GHz | 63%@2.4 GHz 54.8%@5.8 GHz | [61] |
Monopole | Corrugated microstrip on 0.508 mm R04350, = 3.48 | 0.9 GHz 2.1 GHz 2.36 GHz | 70 × 66 mm2 | 1 [email protected] GHz 2.64 [email protected] GHz −0.19 [email protected] GHz | 42.2%@0.9 GHz 72.6%@2.1 GHz 32.8%@2.36 GHz | [62] |
Meandered | Spiral antenna on FR4 | (2.45–2.5 GHz) | 32.8 × 9.7 × 0.8 mm³ | 2.83 [email protected] GHz | 50% | [63] |
Circular | Layered circular slot on 1.6 mm FR4, = 4.4 | 0.908–0.922 GHz 2.35–2.50 GHz | 120 × 120 mm2 | 5.41 dBi@918MHz 7.9 [email protected] GHz | 19%@0.9 GHz 17%@2.45 GHz | [67] |
Slot | Slot antenna on copper, 1.6 mm FR4, = 4.4 | 2.1 GHz 2.4–2.48 GHz 3.3–3.8 GHz | 120 × 120 × 30 mm³ | 7 dBi@2 GHz 5.5 [email protected] GHz 9.2 [email protected] GHz | 85%@2 GHz 75%@2.49 GHz 72%@3.4 GHz | [64] |
Monopole | On 1.6 mm FR4, = 4.4 | 0.9 GHz 1.8 GHz 2.1 GHz 2.45 GHz | 130 × 80 mm2 | 2.6 [email protected] GHz 3.6 [email protected] GHz 3.8 [email protected] GHz 4.7 [email protected] GHz | 25%@1.8 GHz 27%@2.15 GHz | [65] |
Fed square patch | Fractal patch on 1.6 mm FR4 | 0.8–1.2 GHz 1.6–2.1 GHz 2.2–2.8 GHz 3.1–4.0 GHz 5.3–6.4 GHz 7.0–7.8 GHz | 60 × 60 × 1.6 mm³ | 1 dBi@900MHz 3 dBi@2 GHz 5 [email protected] GHz 4 dBi@7 GHz | 28%@900MHz 24%@2.5 GHz 9%@1.8 GHz 17%@3.5 GHz 13%@5.5 GHz 36%@7.5 GHz | [66] |
AntennaArray | Methodology/Substrate | Frequency | Size | Gain (dB) | RF-DC Efficiency | Ref. |
---|---|---|---|---|---|---|
Quasi-Yagi | Quasi-Yagi on 0.762 mm Rogers 5880, | 2.3–2.63 GHz | 26 × 190.5 mm2 | 8.7 dBi | 25%@2.45 GHz | [55] |
Stacked Patch | Short pin omni on 1.6 mm FR4, | 3.3–3.9 GHz | 25.7 × 25.7 mm2 | 7.8 [email protected] GHz | - | [68] |
MIMO Array | Rectangular patch array on 1.6 mm FR4 | 2.32 GHz 2.8 GHz | 100 × 190 mm2 | −10.13 dBi | - | [70] |
Dipole | Rogers 4350, 0.8 mm, | 0.76–0.88 GHz 1.9–2.7 GHz 3.3–3.9 GHz | 86 × 125 mm2 | 6.9 [email protected] GHz 1.3 [email protected] GHz 10.6 [email protected] GHz | 57% 49.5% 60.44% | [72] |
Reflector | Ferrite-loaded, 1.0 mm, , | 1.7–2.7 GHz | 380 × 350 mm2 | 8.9 dBi | - | [73] |
Four-Patch Array | Unidirectional on 0.8 mm Rogers 4350, | 2.45 GHz | 160 × 160 × 7 mm³ | 12.7 dBi | 81.5% | [74] |
Two-element Array | Unidirectional array on FR4 | (0.69–0.96) GHz Lower band (1.7–2.7 GHz) Upper band | 43 × 43 mm2 | 14.65 dBi | 35% Lower band 45% Upper band | [75] |
Four Square Patches | Omni antenna on FR4 | 1.65–2.76 GHz | 135 × 135 mm2 | 8.5 dBi | 22%@2.45 GHz | [76] |
Twelve-element Vivaldi Array | Omni antenna on 0.5 mm RT6002, | 1.7–1.8 GHz 2.1–2.7 GHz | 145 × 145 × 1.52 mm³ | 4.33 [email protected] GHz 4.22 [email protected] GHz 3.88 [email protected] GHz | >60% | [77] |
Methodology/Substrate | Frequency | S11 Bandwidth (%) | Maximum Efficiency (%) | Gain (dB) | Size | Ref. |
---|---|---|---|---|---|---|
CRLH materials on 1.0 mm RT5800, = 2.2. | 2.45 GHz 5.8 GHz | - | 65 | 1.5 [email protected] GHz 5.2 [email protected] GHz | 30 mm radius | [84] |
MSRR on 0.762 mm Rogers 5870, = 2.33. | 1.7–2.67 GHz | 44.1 | 45 | 8.51 dBi | 0.55 × 0.36 | [85] |
CSRR on 1.0 mm RT5800, = 2.2. | 1.8 GHz | 16 | - | 3.1 dBi | 63.8 × 83.8 mm2 | [86] |
Capacitive metasurface on 0.8 mm Rogers 4003C, = 3.55. | 3.02–3.63 GHz | 8.5 | - | 6.57 dBi | 0.58 × 0.58 × 0.043 | [87] |
SRRs on 1.0 mm Rogers 3010, = 10.2. | 3.02–3.63 GHz | 8.5 | - | 6.57 dBi | 4.3 × 4.3 | [88] |
Methodology/Substrate | Frequency | S11 Bandwidth (%) | Maximum Efficiency (%) | Gain (dBi) | Size | Ref. |
---|---|---|---|---|---|---|
ZOR on 0.81 mm RO4003C, = 3.55 | 348–772 MHz | 78 | NA | 9.2 dBi | 0.46 0.46 | [90] |
SRRs on 1.6 mm FR4, = 4.4 | 0.865–1.06 GHz 2.240–2.52 GHz 3.25–4.31 GHz 4.9–6.5 GHz | 28 | NA | 6.74 dBi | 78.6 × 42.5 mm2 | [91] |
Metamaterial on 0.635 mm Rogers 6010, = 6.15 | 0.915 GHz 2.45 GHz | 17.8% 35.8% | NA | 17.8 [email protected] GHz 9.81 [email protected] GHz | 7 × 6 × 0.254 mm³ | [92] |
Near-zero-index on 1.6 mm FR4, = 4.6 | 0.534 GHz | 2.11% | 74.1% | 7.27 dBi | 170 × 170 mm2 | [93] |
Methodology/Substrate | Frequency | S11 Bandwidth (%) | Maximum Efficiency (%) | Gain (dB) | Size | Ref. |
---|---|---|---|---|---|---|
Metamaterial cavity on 0.635mm RT6010, 0.762 mm Rogers 5880, = 6.15/2.2. | 9.7–10.27 GHz | 6.0 | 74.1 | 14.1 dBi | NA | [75] |
EBG on 1.0 mm F4B, = 3.5. | 12.5 GHz 14.2 GHz | 6.0 4.3 | 47.7 | 23.1 dBi 24.4 dBi | 150 × 150 mm2 | [79] |
Agile resonator with parasitics on 0.762 mm Rogers 5880, = 2.2. | 1.39 GHz | 3.92 | NA | 5.92 dBi | NA | [94] |
Methodology/Substrate | Frequency | S11 Bandwidth (%) | Maximum Efficiency (%) | Gain (dB) | In Band Isolation (dB) | Peak Isolation (dB) | Ref. |
---|---|---|---|---|---|---|---|
Metastrip on 0.762 mm Rogers 5880, = 2.2. | 28 GHz | 20.12 | NA | 8 dBi | 22 | 24 | [60] |
EBG/DGS on 0.76 mm TLY-5 ( = 2.2) and 1.6 mm FR4 ( = 4.4). | 28 GHz | 47.7 | 81.9% | 9 dBi | 32.7 | 71.9 | [95] |
CSRR on 0.762 mm Rogers 5880, = 2.2. | 25 GHz | 31.8 | NA | NA | 32 | 55 | [96] |
CSRR with slot on 0.635 mm Rogers 6010, = 6.15. | 3.6 GHz | 27 | 3.59 | NA | 35 | 52 | [97] |
Design | Frequency | Efficiency (%) | Dynamic Range (dB) | Area (mm2) | Ref. |
---|---|---|---|---|---|
CMOS Differential Rectifier | 2.4 GHz | 46% | 25.5 | 1.5 × 0.47 | [90] |
CMOS Villard Multiplier Rectifier | 400 MHz/2.4 GHz | 75% | NA | NA | [106] |
CMOS Passive Rectifier | 0.2 GHz | 70.3% | −4 to 7 | 0.88 | [110] |
CMOS Bootstrap Rectifier | 434 MHz | 71% | −6 to 6 | 0.30 | [111] |
Cross-Coupled CMOS Rectifier | 2.45 GHz | 73% (−6 dBm) 70.4% (−5.5 dBm) | −5 to 7 | 0.90 | [113] |
CMOS-CCDD Rectifier | 0.9 GHz | 83.7% (−18.4 dBm) 80.3% (−17 dBm) | −21 to 13 | NA | [114] |
Double-Sided CMOS Rectifier | 0.9 GHz | 66% | NA | 0.088 | [115] |
CMOS Reconfigurable Rectifier | 0.9 GHz | 25% | NA | NA | [116] |
CMOS Rectifier | 6.78 MHz | 92.2% | NA | 8.0 | [117] |
Diodes | Methodology/Substrate | Frequency | Size | Input Power (dBm) | RF-DC Efficiency (%) | Load (Ω) | Ref. |
---|---|---|---|---|---|---|---|
HSMS 286C | Double diode on Rogers 4350B | 2–3.05 GHz | 25 × 13 mm2 | 0 to 25 | 60%@17 dBm | 620 to 2700 | [60] |
HSMS 2820 | Full-wave doubler on FR4 | 0.9 GHz, 1.8 GHz, 3.5 GHz, 5.5 GHz, 7.3 GHz | - | −10 to 30 | >78% | 5 K | [66] |
HSMS 286 | Half-wave rectifier on Rogers 4350 | 2–3 GHz | 36 × 35 mm2 | 0–10 | >40%@10 dBm | 400 | [75] |
SMS 7630 | Voltage doubler on RT6002 | 1.7–1.8 GHz, 2.1–2.7 GHz | 145 × 145 × 1.52 mm³ | 3 | 55–65% | 2 K | [77] |
HSMS 2860 | Shunt diode on RO4003C | 2.38 GHz, 2.45 GHz | - | −20 to 10 | 75.3%@dBm | 4.47 K | [118] |
SMS 7630-079 | Single diode on Rogers 5880 | 1.8 GHz | 32 × 32 mm2 | −40 to 20 | 21.1%@−20 dBm, 6.9%@−30 dBm | 6 K | [119] |
HSMS 285C | 1-stage/3-stage Dickson rectifier on FR4 | 1 GHz | - | 20 | 77% | 14.61 K | [120] |
MA4E-1319 | Full-wave doubler on textile | 20–26.5 GHz | 32.6 × 16 mm2 | 10 | 12% | 630 | [121] |
HSMS 2820 and HSMS-2850 | Self-tunable line on Taconic RF-35 | 0.9 GHz | 0.195 × 0.073 | 13 | 70% | 390 | [122] |
HSMS 2860 | Branch doubler on Rogers 5880 | 0.866 GHz, 0.915 GHz, 2.45 GHz | 3.5 × 2.6 cm2 | −30 to 0 | 65%@0.866 GHz, 62%@0.915 GHz, 60%@2.45 GHz | 10 K | [123] |
SMS 7630 | Multiple diodes on Rogers 5880 | 1.84 GHz 2.04 GHz 2.36 GHz 2.54 GHz 3.3 GHz 4.76 GHz 5.8 GHz | 54 × 42 mm2 | −20 to 4 | 65%@4 dBm, 28.3–65% across frequencies | 1300 | [124] |
HSMS 285C | Greinacher rectifier on FR4 | 1.85 GHz | 70 × 70 × 1.6 mm³ | 20 | 40% | 4.7 K | [125] |
HSMS- 2862-TRI | Voltage doubler with virtual battery on Rogers RO3003 | 0.06–3.8 GHz | 20 × 7.4 mm2 | 23 | 77.3% | 1.3 K | [126] |
HSMS 2862 SMS 7630 | Voltage doubler with dual-band transmission on FR4 | 0.915 GHz 1.8 GHz 2.4 GHz | 24 × 8.8 cm2 | 17 | 74.9%, 71.2%, 2.45 GHz | 1500 | [127] |
Device | Power Consumption (mW) |
---|---|
GPS Module | 15 |
Mobile Device (Sleep Mode) | 8.1 |
Optical Heart Rate Sensor | 1.47 |
Air Moisture Sensor | 1 |
Pressure Sensing Device | 0.5 |
3D Accelerometer | 0.32 |
Temperature Sensor | 0.027 |
A/D Conversion | 0.001 |
RF Transmission | Sub-W |
Rectenna Design | Frequency | Load | Size | Gain (dBi) | Rectifier | RF-DC Efficiency (%) Power | Ref. |
---|---|---|---|---|---|---|---|
Multiband Differentially fed | 2 GHz 2.5 GHz 3.5 GHz | 2– | 7@ @ @ | Villard Voltage Doubler | @ for , at for , max power is . | [64] | |
Grid-Array DC combiner | GHz | Voltage Doubler | @ for , max power is . | [131] | |||
Patch Array DC combiner | GHz | Single series | @ for , max power is . | [132] | |||
Square Patch RF combiner | GHz | Single shunts | @ for , max power is . | [133] | |||
Suspended Patch Hybrid combiner | GHz | Voltage Doubler | @ for , max power is . | [134] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odiamenhi, M.; Jahanbakhsh Basherlou, H.; Hwang See, C.; Ojaroudi Parchin, N.; Goh, K.; Yu, H. Advancements and Challenges in Antenna Design and Rectifying Circuits for Radio Frequency Energy Harvesting. Sensors 2024, 24, 6804. https://doi.org/10.3390/s24216804
Odiamenhi M, Jahanbakhsh Basherlou H, Hwang See C, Ojaroudi Parchin N, Goh K, Yu H. Advancements and Challenges in Antenna Design and Rectifying Circuits for Radio Frequency Energy Harvesting. Sensors. 2024; 24(21):6804. https://doi.org/10.3390/s24216804
Chicago/Turabian StyleOdiamenhi, Martins, Haleh Jahanbakhsh Basherlou, Chan Hwang See, Naser Ojaroudi Parchin, Keng Goh, and Hongnian Yu. 2024. "Advancements and Challenges in Antenna Design and Rectifying Circuits for Radio Frequency Energy Harvesting" Sensors 24, no. 21: 6804. https://doi.org/10.3390/s24216804
APA StyleOdiamenhi, M., Jahanbakhsh Basherlou, H., Hwang See, C., Ojaroudi Parchin, N., Goh, K., & Yu, H. (2024). Advancements and Challenges in Antenna Design and Rectifying Circuits for Radio Frequency Energy Harvesting. Sensors, 24(21), 6804. https://doi.org/10.3390/s24216804