Effects of Mild Fatigue on Biomechanics of Single Leg Landing in Young Male Volleyball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experiment Procedure
2.3. Fatigue Protocol
2.4. Data Collection
2.5. Data Processing
2.6. Workflow of OpenSim
- Skeletal model: Typically based on medical imaging (e.g., CT, MRI) or standardized human skeletal models.
- 2.
- Inverse kinematics (IK)
- 3.
- Inverse dynamics (ID)
- 4.
- Residual reduction algorithm (RRA)
- 5.
- Static optimization (SO)
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gouttebarge, V.; van Sluis, M.; Verhagen, E.; Zwerver, J. The prevention of musculoskeletal injuries in volleyball: The systematic development of an intervention and its feasibility. Inj. Epidemiol. 2017, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- Coimbra, D.R.; Bevilacqua, G.G.; Pereira, F.S.; Andrade, A. Effect of Mindfulness Training on Fatigue and Recovery in Elite Volleyball Athletes: A Randomized Controlled Follow-Up Study. J. Sports Sci. Med. 2021, 20, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kilic, O.; Maas, M.; Verhagen, E.; Zwerver, J.; Gouttebarge, V. Incidence, aetiology and prevention of musculoskeletal injuries in volleyball: A systematic review of the literature. Eur. J. Sport Sci. 2017, 17, 765–793. [Google Scholar] [CrossRef] [PubMed]
- Bere, T.; Kruczynski, J.; Veintimilla, N.; Hamu, Y.; Bahr, R. Injury risk is low among world-class volleyball players: 4-year data from the FIVB Injury Surveillance System. Br. J. Sports Med. 2015, 49, 1132–1137. [Google Scholar] [CrossRef]
- Verhagen, E.A.; Van der Beek, A.J.; Bouter, L.M.; Bahr, R.M.; Van Mechelen, W. A one season prospective cohort study of volleyball injuries. Br. J. Sports Med. 2004, 38, 477–481. [Google Scholar] [CrossRef]
- Baugh, C.M.; Weintraub, G.S.; Gregory, A.J.; Djoko, A.; Dompier, T.P.; Kerr, Z.Y. Descriptive Epidemiology of Injuries Sustained in National Collegiate Athletic Association Men’s and Women’s Volleyball, 2013–2014 to 2014–2015. Sports Health A Multidiscip. Approach 2018, 10, 60–69. [Google Scholar] [CrossRef]
- Marquez, W.Q.; Masumura, M.; Ae, M. Spike-landing Motion of Elite Male Volleyball Players during Official Games. Int. J. Sport Health Sci. 2011, 9, 82–90. [Google Scholar] [CrossRef]
- Coventry, E.; O’Connor, K.M.; Hart, B.A.; Earl, J.E.; Ebersole, K.T. The effect of lower extremity fatigue on shock attenuation during single-leg landing. Clin. Biomech. 2006, 21, 1090–1097. [Google Scholar] [CrossRef]
- Benjaminse, A.; Webster, K.E.; Kimp, A.; Meijer, M.; Gokeler, A. Revised Approach to the Role of Fatigue in Anterior Cruciate Ligament Injury Prevention: A Systematic Review with Meta-Analyses. Sports Med. 2019, 49, 565–586. [Google Scholar] [CrossRef]
- Dickin, D.C.; Johann, E.; Wang, H.; Popp, J.K. Combined Effects of Drop Height and Fatigue on Landing Mechanics in Active Females. J. Appl. Biomech. 2015, 31, 237–243. [Google Scholar] [CrossRef]
- Iguchi, J.; Tateuchi, H.; Taniguchi, M.; Ichihashi, N. The effect of sex and fatigue on lower limb kinematics, kinetics, and muscle activity during unanticipated side-step cutting. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Xia, R.; Zhang, X.; Wang, X.; Sun, X.; Fu, W. Effects of Two Fatigue Protocols on Impact Forces and Lower Extremity Kinematics during Drop Landings: Implications for Noncontact Anterior Cruciate Ligament Injury. J. Healthc. Eng. 2017, 2017, 5690519. [Google Scholar] [CrossRef] [PubMed]
- Gear, W.S. Effect of different levels of localized muscle fatigue on knee position sense. J. Sports Sci. Med. 2011, 10, 725–730. [Google Scholar] [PubMed]
- Wnorowski, K.; Aschenbrenner, P.; Skrobecki, J.; Stech, M. An assessment of a volleyball player’s loads in a match on the basis of the number and height of jumps measured in real-time conditions. Balt. J. Health Phys. Act. 2013, 5, 5. [Google Scholar] [CrossRef]
- Tsai, Y.J.; Chia, C.C.; Lee, P.Y.; Lin, L.C.; Kuo, Y.L. Landing Kinematics, Sports Performance, and Isokinetic Strength in Adolescent Male Volleyball Athletes: Influence of Core Training. J. Sport Rehabil. 2020, 29, 65–72. [Google Scholar] [CrossRef]
- Vanderlei, F.M.; Bastos, F.N.; Tsutsumi, G.Y.C.; Vanderlei, L.C.M.; Júnior, J.N.; Pastre, C.M. Characteristics and contributing factors related to sports injuries in young volleyball players. BMC Res. Notes 2013, 6, 415. [Google Scholar] [CrossRef]
- García-Luna, M.A.; Cortell-Tormo, J.M.; García-Jaén, M.; Ortega-Navarro, M.; Tortosa-Martínez, J. Acute Effects of ACL Injury-Prevention Warm-Up and Soccer-Specific Fatigue Protocol on Dynamic Knee Valgus in Youth Male Soccer Players. Int. J. Environ. Res. Public Health 2020, 17, 5608. [Google Scholar] [CrossRef]
- Azuma, N.; Sugano, T.; Shimizu, I.; Kosaka, M. Injuries associated with Japanese high-school men’s volleyball: A two-year survey and analysis. J. Phys. Ther. Sci. 2019, 31, 656–660. [Google Scholar] [CrossRef]
- Lin, H.-T.; Kuo, W.-C.; Chen, Y.; Lo, T.-Y.; Li, Y.-I.; Chang, J.-H. Effects of Fatigue in Lower Back Muscles on Basketball Jump Shots and Landings. Phys. Act. Health 2022, 6, 273. [Google Scholar] [CrossRef]
- Tait, D.B.; Newman, P.; Ball, N.B.; Spratford, W. What did the ankle say to the knee? Estimating knee dynamics during landing—A systematic review and meta-analysis. J. Sci. Med. Sport 2022, 25, 183–191. [Google Scholar] [CrossRef]
- Cortes, N.; Greska, E.; Ambegaonkar, J.P.; Kollock, R.O.; Caswell, S.V.; Onate, J.A. Knee kinematics is altered post-fatigue while performing a crossover task. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2014, 22, 2202–2208. [Google Scholar] [CrossRef] [PubMed]
- Jayalath, J.L.R.; de Noronha, M.; Weerakkody, N.; Bini, R. Effects of fatigue on ankle biomechanics during jumps: A systematic review. J. Electromyogr. Kinesiol. 2018, 42, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Orishimo, K.F.; Kremenic, I.J. Effect of Fatigue on Single-Leg Hop Landing Biomechanics. J. Appl. Biomech. 2006, 22, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ruan, M.; Singh, N.B.; Huang, L.; Zhang, X.; Wu, X. Progression of Fatigue Modifies Primary Contributors to Ground Reaction Forces During Drop Landing. J. Hum. Kinet. 2021, 76, 161–173. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, R.; Dai, B.; Sun, X.; Fu, W. Effects of Exercise-Induced Fatigue on Lower Extremity Joint Mechanics, Stiffness, and Energy Absorption during Landings. J. Sports Sci. Med. 2018, 17, 640–649. [Google Scholar]
- Kim, H.; Palmieri-Smith, R.; Kipp, K. Muscle force contributions to ankle joint contact forces during an unanticipated cutting task in people with chronic ankle instability. J. Biomech. 2021, 124, 110566. [Google Scholar] [CrossRef]
- Kellis, E.; Kouvelioti, V. Agonist versus antagonist muscle fatigue effects on thigh muscle activity and vertical ground reaction during drop landing. J. Electromyogr. Kinesiol. 2009, 19, 55–64. [Google Scholar] [CrossRef]
- Enoka, R.M. Muscle fatigue—From motor units to clinical symptoms. J. Biomech. 2012, 45, 427–433. [Google Scholar] [CrossRef]
- Jordan, S.S.; DeFrate, L.E.; Nha, K.W.; Papannagari, R.; Gill, T.J.; Li, G. The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion. Am. J. Sports Med. 2007, 35, 547–554. [Google Scholar] [CrossRef]
- Markolf, K.L.; Burchfield, D.M.; Shapiro, M.M.; Shepard, M.F.; Finerman, G.A.; Slauterbeck, J.L. Combined knee loading states that generate high anterior cruciate ligament forces. J. Orthop. Res. 1995, 13, 930–935. [Google Scholar] [CrossRef]
- Malloy, P.; Morgan, A.; Meinerz, C.; Geiser, C.; Kipp, K. The association of dorsiflexion flexibility on knee kinematics and kinetics during a drop vertical jump in healthy female athletes. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 3550–3555. [Google Scholar] [CrossRef] [PubMed]
- Pope, R.; Herbert, R.; Kirwan, J. Effects of ankle dorsiflexion range and pre-exercise calf muscle stretching on injury risk in Army recruits. Aust. J. Physiother. 1998, 44, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Malliaras, P.; Cook, J.L.; Kent, P. Reduced ankle dorsiflexion range may increase the risk of patellar tendon injury among volleyball players. J. Sci. Med. Sport 2006, 9, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Witvrouw, E.; Lysens, R.; Bellemans, J.; Cambier, D.; Vanderstraeten, G. Intrinsic risk factors for the development of anterior knee pain in an athletic population. A two-year prospective study. Am. J. Sports Med. 2000, 28, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Drewes, L.K.; Mckeon, P.O.; Kerrigan, D.C.; Hertel, J. Dorsiflexion deficit during jogging with chronic ankle instability. J. Sci. Med. Sport 2010, 12, 685–687. [Google Scholar] [CrossRef]
- Shimokochi, Y.; Shultz, S.J. The Relationship between Ankle Dorsiflexion ROM and Ground Reaction Force during a Single Leg Landing: 859: June 1 2:15 PM–2:30 PM. Med. Sci. Sports Exerc. 2007, 39, S79. [Google Scholar] [CrossRef]
- Hahn, D.; Olvermann, M.; Richtberg, J.; Seiberl, W.; Schwirtz, A. Knee and ankle joint torque-angle relationships of multi-joint leg extension. J. Biomech. 2011, 44, 2059–2065. [Google Scholar] [CrossRef]
- Muyor, J.M.; Martín-Fuentes, I.; Rodríguez-Ridao, D.; Antequera-Vique, J.A. Electromyographic activity in the gluteus medius, gluteus maximus, biceps femoris, vastus lateralis, vastus medialis and rectus femoris during the Monopodal Squat, Forward Lunge and Lateral Step-Up exercises. PLoS ONE 2020, 15, e0230841. [Google Scholar] [CrossRef]
- Wang, D.; Wang, M.; Chu, V.W.; Yung, P.S.; Fong, D.T.P. Effects of Gluteus Medius and Biceps Femoris Stimulation on Reduction of Knee Abduction Moment During a Landing Task. J. Appl. Biomech. 2023, 39, 110–117. [Google Scholar] [CrossRef]
- Ebert, J.R.; Edwards, P.K.; Fick, D.P.; Janes, G.C. A Systematic Review of Rehabilitation Exercises to Progressively Load the Gluteus Medius. J. Sport Rehabil. 2017, 26, 418–436. [Google Scholar] [CrossRef]
- Gowda, A.L.; Mease, S.J.; Donatelli, R.; Zelicof, S. Gluteus medius strengthening and the use of the Donatelli Drop Leg Test in the athlete. Phys. Ther. Sport 2014, 15, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, L.; Pritchard, S.E.; Warmenhoven, J.; Bruce, T.; MacDonald, K.; Klimstra, M.; McNeil, C.J. Volleyball Competition on Consecutive Days Modifies Jump Kinetics but Not Height. Int. J. Sports Physiol. Perform. 2022, 17, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, F.; Santos, F.; Gonçalves, P.; Oliveira, J. Effects of volleyball match-induced fatigue on knee joint position sense. Eur. J. Sport Sci. 2008, 8, 397–402. [Google Scholar] [CrossRef]
- Gandevia, S.C. Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev. 2001, 81, 1725–1789. [Google Scholar] [CrossRef]
- Cortes, N.; Greska, E.; Kollock, R.; Ambegaonkar, J.; Onate, J.A. Changes in Lower Extremity Biomechanics Due to a Short-Term Fatigue Protocol. J. Athl. Train. 2013, 48, 306–313. [Google Scholar] [CrossRef]
- Quammen, D.; Cortes, N.; Van Lunen, B.L.; Lucci, S.; Ringleb, S.I.; Onate, J. Two different fatigue protocols and lower extremity motion patterns during a stop-jump task. J. Athl. Train. 2012, 47, 32–41. [Google Scholar] [CrossRef]
- McLean, S.G.; Samorezov, J.E. Fatigue-induced ACL injury risk stems from a degradation in central control. Med. Sci. Sports Exerc. 2009, 41, 1661–1672. [Google Scholar] [CrossRef]
Criterion | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Age | 13–18 years old | Younger than 13 or older than 18 |
Sex | Male | Female |
Sport Experience | At least 2 years of volleyball training experience, currently on a school or club team | Lack of volleyball training experience or insufficient training volume |
Health Status | No significant medical history, no lower extremity injuries, no recent surgeries | History of heart disease, hypertension, diabetes, or other chronic diseases; history of lower extremity injuries; recent surgeries |
Training Volume | At least 3 training sessions per week, each session lasting at least 1 h | Insufficient training volume |
Skill Level | Possesses good basic volleyball skills, especially landing technique | Poor technical skills |
Strength Level | Passes strength tests to ensure adequate lower extremity muscle strength | Insufficient lower extremity muscle strength |
Flexibility | Passes flexibility tests to ensure adequate range of motion in lower extremity joints | Insufficient flexibility |
Dominant Hand and Foot | Dominant hand and foot are on the right side | Dominant hand and foot are on the left side |
Other | Willingness to participate in the study and signed informed consent | Does not meet the specific requirements of the study |
Participant’s Number | Age (years) | Height (cm) | Weight (kg) | Head Circumference (cm) | Chest Circumference (cm) | Arm Length (cm) | Palm Width (cm) | Waist Circumference (cm) | Thigh Length (cm) | Knee Width (cm) | Calf Length (cm) | Foot Length (cm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 15 | 181.2 | 65.9 | 56.4 | 91.8 | 58.4 | 8 | 72.4 | 44.2 | 10.1 | 37.7 | 24.7 |
2 | 16 | 179.0 | 81.4 | 59.3 | 88.7 | 58.6 | 8.1 | 66.4 | 52.5 | 10.3 | 32.9 | 25.9 |
3 | 16 | 187.5 | 79.7 | 56.4 | 88.5 | 54.2 | 8.3 | 67.7 | 55.2 | 10.2 | 36.8 | 25.1 |
4 | 15 | 183.8 | 65.2 | 56.3 | 87.9 | 57.7 | 8.8 | 72.2 | 51.5 | 10.6 | 39.7 | 23.4 |
5 | 15 | 189.2 | 71.9 | 60.7 | 95.4 | 61.4 | 8.1 | 72.3 | 54 | 10.7 | 38.4 | 23 |
6 | 15 | 182.1 | 67.4 | 56.8 | 98.1 | 62.8 | 8.7 | 70.6 | 48 | 11.1 | 36.5 | 23.7 |
7 | 15 | 190.3 | 75.8 | 55 | 89.8 | 59.4 | 8.1 | 63.4 | 50.6 | 9.8 | 36.4 | 25.1 |
8 | 16 | 186,7 | 69.6 | 57 | 92.3 | 58.9 | 8.8 | 72.2 | 48 | 11.3 | 38.1 | 23.2 |
9 | 16 | 185.5 | 76.4 | 56.5 | 91.4 | 61.9 | 8.3 | 71 | 46.6 | 9.2 | 37.8 | 25.8 |
10 | 14 | 188.0 | 68.7 | 58.4 | 88 | 66.2 | 8.3 | 69 | 49 | 11.1 | 39.1 | 22.2 |
Non-Fatigue | Post-Fatigue | |||||
---|---|---|---|---|---|---|
Hip | Knee | Ankle | Hip | Knee | Ankle | |
Joint angle at IC (°) | 11.0 (7.9) | −17.7 (11.7) | 6.3 (15.6) | 11.9 (9.7) | −16.1 (10.2) | 3.31 (4.7) * |
Peak joint angle (°) | 31.2 (19.9) | −47.6 (8.1) | 34.8 (4.4) | 32.8 (23.4) | −49.1 (11.9) | 35.5 (5.4) |
Range of motion (°) | 20.5 (13.6) | 29.8 (10.0) | 28.6 (16.2) | 21.9 (11.6) | 35.2 (10.9) * | 32.9 (15.7) |
Non-Fatigue | Post-Fatigue | |||||
---|---|---|---|---|---|---|
Hip | Knee | Ankle | Hip | Knee | Ankle | |
Joint moment at IC (Nm/kg) | −1.7 (2.3) | −1.3 (1.8) | −0.4 (0.8) | −1.6 (2.0) | −1.5 (1.6) | −0.4 (0.9) |
Peak joint moment (Nm/kg) | −4.7 (2.2) | 2.8 (0.9) | −3.2 (0.3) | −5.3 (2.8) | 2.3 (0.5) | −3.4 (0.8) |
Non-Fatigue | Post-Fatigue | |
---|---|---|
Muscle force at IC (BW) | ||
GMX | 0.05 (0.03) | 0.07 (0.11) |
GMD | 0.15 (0.15) | 0.15 (0.19) |
VI | 0.09 (0.01) | 0.20 (0.31) |
RF | 0.02 (0.01) | 0.03 (0.04) |
BF | 0.18 (0.17) | 0.23 (0.27) |
GS | 0.11 (0.04) | 0.18 (0.19) |
TP | 0.07 (0.01) | 0.17 (0.29) |
TA | 0.02 (0.01) | 0.05 (0.07) |
Peak muscle force (BW) | ||
GMX | 1.62 (0.49) | 2.39 (0.32) * |
GMD | 0.51 (0.17) | 0.79 (0.36) * |
VI | 5.49 (3.76) | 3.85 (3.75) |
RF | 0.27 (0.12) | 0.39 (0.11) |
BF | 1.01 (0.58) | 1.33 (0.72) |
GS | 0.57 (0.10) | 0.94 (0.44) * |
TP | 0.13 (0.11) | 0.61 (0.49) * |
TA | 0.03 (0.01) | 0.41 (0.36) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Kapilevich, L.V.; Chen, J. Effects of Mild Fatigue on Biomechanics of Single Leg Landing in Young Male Volleyball Players. Sensors 2024, 24, 6811. https://doi.org/10.3390/s24216811
Li T, Kapilevich LV, Chen J. Effects of Mild Fatigue on Biomechanics of Single Leg Landing in Young Male Volleyball Players. Sensors. 2024; 24(21):6811. https://doi.org/10.3390/s24216811
Chicago/Turabian StyleLi, Taisen, Leonid Vladimirovich Kapilevich, and Junru Chen. 2024. "Effects of Mild Fatigue on Biomechanics of Single Leg Landing in Young Male Volleyball Players" Sensors 24, no. 21: 6811. https://doi.org/10.3390/s24216811
APA StyleLi, T., Kapilevich, L. V., & Chen, J. (2024). Effects of Mild Fatigue on Biomechanics of Single Leg Landing in Young Male Volleyball Players. Sensors, 24(21), 6811. https://doi.org/10.3390/s24216811