Magnetic Garments Promote Parasympathetic Dominance and Improve Sleep Quality in Male Long-Distance Runners Following a 30 km Run
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Experimental Protocols
2.3. Procedures
2.4. Statistical Analyses
3. Results
3.1. Sleep Analyses
3.2. Autonomic Nervous System Parameters
3.3. Perceived Recovery and Deep Sleep Score
4. Discussion
4.1. Different Responses of Autonomic Status After 30k-RUN Between CTRL and MAG
4.2. Effects of Magnetic Intervention on Endurance Athletes
4.3. Practical Implications and Potential Mechanisms of Magnetic Wear
4.4. Methodological Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dupuy, O.; Douzi, W.; Theurot, D.; Bosquet, L.; Dugué, B. An Evidence-Based Approach for Choosing Post-Exercise Recovery Techniques to Reduce Markers of Muscle Damage, Soreness, Fatigue, and Inflammation: A Systematic Review with Meta-Analysis. Front. Physiol. 2018, 9, 403. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Liu, J.; Weng, K.; Griffin, L.; Rice, L.A.; Jan, Y.-K. Effects of Various Physical Interventions on Reducing Neuromuscular Fatigue Assessed by Electromyography: A Systematic Review and Meta-Analysis. Front. Bioeng. Biotechnol. 2021, 9, 659138. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, Y.; Jinde, M.; Murooka, K.; Konno, Y.; Ohta, M.; Yamato, H. Stretching versus Transitory Icing: Which Is the More Effective Treatment for Attenuating Muscle Fatigue after Repeated Manual Labor? Eur. J. Appl. Physiol. 2014, 114, 2617–2623. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Edwards, B. Altered sleep–wake cycles and physical performance in athletes. Physiol. Behav. 2007, 90, 274–284. [Google Scholar] [CrossRef]
- Hausswirth, C.; Louis, J.; Aubry, A.; Bonnet, G.; Duffield, R.; Le Meur, Y. Evidence of Disturbed Sleep and Increased Illness in Overreached Endurance Athletes. Med. Sci. Sports Exerc. 2014, 46, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.R.; Rogers, G.G.; Driver, H.S. Effects of training volume on sleep, psychological, and selected physiological profiles of elite female swimmers. Med. Sci. Sports Exerc. 1997, 29, 688–693. [Google Scholar] [CrossRef]
- Leeder, J.; Glaister, M.; Pizzoferro, K.; Dawson, J.; Pedlar, C. Sleep Duration and Quality in Elite Athletes Measured Using Wristwatch Actigraphy. J. Sports Sci. 2012, 30, 541–545. [Google Scholar] [CrossRef]
- Seiler, S.; Haugen, O.; Kuffel, E. Autonomic Recovery after Exercise in Trained Athletes: Intensity and Duration Effects. Med. Sci. Sports Exerc. 2007, 39, 1366–1373. [Google Scholar] [CrossRef]
- Flatt, A.A.; Hornikel, B.; Esco, M.R. Heart Rate Variability and Psychometric Responses to Overload and Tapering in Collegiate Sprint-Swimmers. J. Sci. Med. Sport 2017, 20, 606–610. [Google Scholar] [CrossRef]
- Henry, S.L.; Concannon, M.J.; Yee, G.J. The effect of magnetic fields on wound healing: Experimental study and review of the literature. Eplasty 2008, 25, e40. [Google Scholar]
- Gmitrov, J.; Ohkubo, C.; Okano, H. Effect of 0.25 T Static Magnetic Field on Microcirculation in Rabbits. Bioelectromagnetics 2002, 23, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Kanai, S.; Susuki, R.; Abe, H.; Okano, H. Static Magnetic Fields Used to Treat Low Back Pain, monitored by Thermography. Orthop. Traumatol. 1997, 46, 764–766. [Google Scholar] [CrossRef]
- Kanai, S.; Taniguchi, N.; Kawamoto, M.; Endo, H. Therapeutic Effects of Magnetic Fields on Frozen Shoulder. Orthop. Traumatol. 2001, 50, 241–244. [Google Scholar] [CrossRef]
- Buchheit, M.; Simon, C.; Piquard, F.; Ehrhart, J.; Brandenberger, G. Effects of increased training load on vagal-related indexes of heart rate variability: A novel sleep approach. Am. J. Physiol. Heart. Circ. Physiol. 2004, 287, H2813–H2818. [Google Scholar] [CrossRef]
- Lee, T.; Cho, Y.; Cha, K.S.; Jung, J.; Cho, J.; Kim, H.; Kim, D.; Hong, J.; Lee, D.; Keum, M.; et al. Accuracy of 11 Wearable, Nearable, and Airable Consumer Sleep Trackers: Prospective Multicenter Validation Study. JMIR mhealth uhealth 2023, 11, e50983. [Google Scholar] [CrossRef]
- de Zambotti, M.; Baker, F.; Willoughby, A.R.; Godino, J.G.; Wing, D.; Patrick, K.; Colrain, I.M. Measures of sleep and cardiac functioning during sleep using a multi-sensory commercially-available wristband in adolescents. Physiol. Behav. 2016, 158, 143–149. [Google Scholar] [CrossRef]
- Mantua, J.; Gravel, N.; Spencer, R. Reliability of Sleep Measures from Four Personal Health Monitoring Devices Compared to Research-Based Actigraphy and Polysomnography. Sensors 2016, 16, 646. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Morales, J.; Álamo, J.M.; García-Massó, X.; Buscà, B.; López, J.L.; Serra-Añó, P.; González, L.-M. Use of Heart Rate Variability in Monitoring Stress and Recovery in Judo Athletes. J. Strength. Cond. Res. 2014, 28, 1896–1905. [Google Scholar] [CrossRef]
- Rabbani, A.; Clemente, F.M.; Kargarfard, M.; Chamari, K. Match Fatigue Time-Course Assessment Over Four Days: Usefulness of the Hooper Index and Heart Rate Variability in Professional Soccer Players. Front. Physiol. 2019, 10, 109. [Google Scholar] [CrossRef]
- Nédélec, M.; Halson, S.; Abaidia, A.E.; Ahmaidi, S.; Dupont, G. Stress, sleep and recovery in elite soccer: A critical review of the literature. Sports Med. 2015, 45, 1387–1400. [Google Scholar] [CrossRef]
- Sargent, C.; Halson, S.; Roach, G.D. Sleep or swim? Early-morning training severely restricts the amount of sleep obtained by elite swimmers. Eur. J. Sport. Sci. 2014, 14 (Suppl. S1), S310–S315. [Google Scholar] [CrossRef]
- Killer, S.C.; Svendsen, I.S.; Jeukendrup, A.E.; Gleeson, M. Evidence of disturbed sleep and mood state in well-trained athletes during short-term intensified training with and without a high carbohydrate nutritional intervention. J. Sports Sci. 2017, 35, 1402–1410. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.S.H.; Teo, W.-P.; Aisbett, B.; Warmington, S.A. Extended Sleep Maintains Endurance Performance Better than Normal or Restricted Sleep. Med. Sci. Sports. Exerc. 2019, 51, 2516–2523. [Google Scholar] [CrossRef] [PubMed]
- Kanai, S.; Taniguchi, N. Efficacy of Static Magnetic Field for Pain of Adjuvant Arthritis Rats. Adv. Biosci. Biotechnol. 2012, 3, 511–515. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, H.; Ding, X.; Liao, Z.; Wei, M.; Li, J.; Wu, T.; Li, C.; Fang, Y. Modulation of Sleep Architecture by Whole-Body Static Magnetic Exposure: A Study Based on EEG-Based Automatic Sleep Staging. Int. J. Environ. Res. Public Health 2022, 19, 741. [Google Scholar] [CrossRef]
- Rosen, A.D. Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem. Biophys. 2003, 39, 163–173. [Google Scholar] [CrossRef]
- Wever, R. Human circadian rhythms under the influence of weak electric fields and the different aspects of these studies. Int. J. Biometeorol. 1973, 17, 227–232. [Google Scholar] [CrossRef]
- Liang, Z.; Chapa-Martell, M.A. Accuracy of Fitbit Wristbands in Measuring Sleep Stage Transitions and the Effect of User-Specific Factors. JMIR mhealth uhealth 2019, 7, e13384. [Google Scholar] [CrossRef]
- Cook, J.D.; Prairie, M.L.; Plante, D.T. Utility of the Fitbit Flex to Evaluate Sleep in Major Depressive Disorder: A Comparison against Polysomnography and Wrist-Worn Actigraphy. J. Affect. Disord. 2017, 217, 299–305. [Google Scholar] [CrossRef]
- Bian, J.; Guo, Y.; Xie, M.; Parish, A.E.; Wardlaw, I.; Brown, R.; Modave, F.; Zheng, D.; Perry, T.T. Exploring the Association Between Self-Reported Asthma Impact and Fitbit-Derived Sleep Quality and Physical Activity Measures in Adolescents. JMIR mhealth uhealth 2017, 5, e105. [Google Scholar] [CrossRef]
- Kainec, K.A.; Caccavaro, J.; Barnes, M.; Hoff, C.; Berlin, A.; Spencer, R.M.C. Evaluating Accuracy in Five Commercial Sleep-Tracking Devices Compared to Research-Grade Actigraphy and Polysomnography. Sensors 2024, 24, 635. [Google Scholar] [CrossRef] [PubMed]
- Chinoy, E.D.; Cuellar, J.A.; Huwa, K.E.; Jameson, J.T.; Watson, C.H.; Bessman, S.C.; Hirsch, D.A.; Cooper, A.D.; Drummond, S.P.A.; Markwald, R.R. Performance of Seven Consumer Sleep-Tracking Devices Compared with Polysomnography. Sleep 2021, 44, zsaa291. [Google Scholar] [CrossRef] [PubMed]
- Montgomery-Downs, H.E.; Insana, S.P.; Bond, J.A. Movement toward a Novel Activity Monitoring Device. Sleep Breath. 2012, 16, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Stanley, N. Actigraphy in human psychopharmacology: A review. Hum. Psychopharmacol. 2003, 18, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.L.; Shattuck, L.G. Sleep patterns of young men and women enrolled at the United States Military Academy: Results from year 1 of a 4-year longitudinal study. Sleep 2005, 28, 837–841. [Google Scholar] [CrossRef]
- Beattie, Z.; Oyang, Y.; Statan, A.; Ghoreyshi, A.; Pantelopoulos, A.; Russell, A.; Heneghan, C. Estimation of Sleep Stages in a Healthy Adult Population from Optical Plethysmography and Accelerometer Signals. Physiol. Meas. 2017, 38, 1968–1979. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nobue, A.; Sano, K.; Ishikawa, M. Magnetic Garments Promote Parasympathetic Dominance and Improve Sleep Quality in Male Long-Distance Runners Following a 30 km Run. Sensors 2024, 24, 6820. https://doi.org/10.3390/s24216820
Nobue A, Sano K, Ishikawa M. Magnetic Garments Promote Parasympathetic Dominance and Improve Sleep Quality in Male Long-Distance Runners Following a 30 km Run. Sensors. 2024; 24(21):6820. https://doi.org/10.3390/s24216820
Chicago/Turabian StyleNobue, Ayaka, Kanae Sano, and Masaki Ishikawa. 2024. "Magnetic Garments Promote Parasympathetic Dominance and Improve Sleep Quality in Male Long-Distance Runners Following a 30 km Run" Sensors 24, no. 21: 6820. https://doi.org/10.3390/s24216820
APA StyleNobue, A., Sano, K., & Ishikawa, M. (2024). Magnetic Garments Promote Parasympathetic Dominance and Improve Sleep Quality in Male Long-Distance Runners Following a 30 km Run. Sensors, 24(21), 6820. https://doi.org/10.3390/s24216820