Age-Related Changes in Postural Stability in Response to Varying Surface Instability in Young and Middle-Aged Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Equipment and Experimental Procedure
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Postural Control
3.2. Perception of Effort
4. Discussion
Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shumway-Cook, A.; Woollacott, M.H. Motor Control: Translating Research into Clinical Practice; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2017; ISBN 9781496302632. [Google Scholar]
- Horak, F.B. Postural Orientation and Equilibrium: What Do We Need to Know about Neural Control of Balance to Prevent Falls? Age Ageing 2006, 35, ii7–ii11. [Google Scholar] [CrossRef] [PubMed]
- Peterka, R.J. Sensorimotor Integration in Human Postural Control. J. Neurophysiol. 2002, 88, 1097–1118. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Y.; Yang, G.-Y.; Jin, K. Age-Related Dysfunction in Balance: A Comprehensive Review of Causes, Consequences, and Interventions. Aging Dis. 2024. [Google Scholar] [CrossRef] [PubMed]
- Osoba, M.Y.; Rao, A.K.; Agrawal, S.K.; Lalwani, A.K. Balance and Gait in the Elderly: A Contemporary Review. Laryngoscope Investig. Otolaryngol. 2019, 4, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Horlings, C.G.; van Engelen, B.G.; Allum, J.H.; Bloem, B.R. A Weak Balance: The Contribution of Muscle Weakness to Postural Instability and Falls. Nat. Clin. Pr. Neurol. 2008, 4, 504–515. [Google Scholar] [CrossRef]
- Marini, K.; Mahlknecht, P.; Schorr, O.; Baumgartner, M.; De Marzi, R.; Raccagni, C.; Kiechl, S.; Rungger, G.; Stockner, H.; Willeit, P.; et al. Associations of Gait Disorders and Recurrent Falls in Older People: A Prospective Population-Based Study. Gerontology 2022, 68, 1139–1144. [Google Scholar] [CrossRef]
- Abrahamova, D.; Hlavacka, F. Age-Related Changes of Human Balance during Quiet Stance. Physiol. Res. 2008, 57, 1–17. [Google Scholar] [CrossRef]
- Colarusso, C.A. Middle Adulthood (Ages 40–60). In Child and Adult Development; Springer: Boston, MA, USA, 1992; pp. 163–182. [Google Scholar]
- Sihvonen, S.; Era, P.; Helenius, M. Postural Balance and Health-Related Factors in Middle-Aged and Older Women with Injurious Falls and Non-Fallers. Aging Clin. Exp. Res. 2004, 16, 139–146. [Google Scholar] [CrossRef]
- Helfer, K.S.; Freyman, R.L.; van Emmerik, R.; Banks, J. Postural Control While Listening in Younger and Middle-Aged Adults. Ear Hear. 2020, 41, 1383–1396. [Google Scholar] [CrossRef]
- Woollacott, M.H.; Shumway-Cook, A.; Nashner, L.M. Aging and Posture Control: Changes in Sensory Organization and Muscular Coordination. Int. J. Aging Hum. Dev. 1986, 23, 97–114. [Google Scholar] [CrossRef]
- Stevens, J.A.; Ballesteros, M.F.; Mack, K.A.; Rudd, R.A.; DeCaro, E.; Adler, G. Gender Differences in Seeking Care for Falls in the Aged Medicare Population. Am. J. Prev. Med. 2012, 43, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Sturnieks, D.L.; George, R.S.; Lord, S.R. Balance Disorders in the Elderly. Neurophysiol. Clin. Clin. Neurophysiol. 2008, 38, 467–478. [Google Scholar] [CrossRef]
- Pohl, P.; Ahlgren, C.; Nordin, E.; Lundquist, A.; Lundin-Olsson, L. Gender Perspective on Fear of Falling Using the Classification of Functioning as the Model. Disabil. Rehabil. 2015, 37, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Promsri, A. Modulation of Lower-Limb Muscle Activity in Maintaining Unipedal Balance According to Surface Stability, Sway Direction, and Leg Dominance. Sports 2022, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Promsri, A. Age and Visual Contribution Effects on Postural Control Assessed by Principal Component Analysis of Kinematic Marker Data. Sports 2023, 11, 98. [Google Scholar] [CrossRef]
- Horak, F.B.; Nashner, L.M. Central Programming of Postural Movements: Adaptation to Altered Support-Surface Configurations. J. Neurophysiol. 1986, 55, 1369–1381. [Google Scholar] [CrossRef]
- Promsri, A.; Haid, T.; Federolf, P. Complexity, Composition, and Control of Bipedal Balancing Movements as the Postural Control System Adapts to Unstable Support Surfaces or Altered Feet Positions. Neuroscience 2020, 430, 113–124. [Google Scholar] [CrossRef]
- Nam, H.C.; Cha, H.G.; Kim, M.K. The Effects of Exercising on an Unstable Surface on the Gait and Balance Ability of Normal Adults. J. Phys. Ther. Sci. 2016, 28, 2102–2104. [Google Scholar] [CrossRef]
- Eisen, T.C.; Danoff, J.V.; Leone, J.E.; Miller, T.A. The Effects of Multiaxial and Uniaxial Unstable Surface Balance Training in College Athletes. J. Strength Cond. Res. 2010, 24, 1740–1745. [Google Scholar] [CrossRef]
- Promsri, A.; Mohr, M.; Federolf, P. Principal Postural Acceleration and Myoelectric Activity: Interrelationship and Relevance for Characterizing Neuromuscular Function in Postural Control. Hum. Mov. Sci. 2021, 77, 102792. [Google Scholar] [CrossRef]
- Prasanth, H.; Caban, M.; Keller, U.; Courtine, G.; Ijspeert, A.; Vallery, H.; von Zitzewitz, J. Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review. Sensors 2021, 21, 2727. [Google Scholar] [CrossRef] [PubMed]
- Ghislieri, M.; Gastaldi, L.; Pastorelli, S.; Tadano, S.; Agostini, V. Wearable Inertial Sensors to Assess Standing Balance: A Systematic Review. Sensors 2019, 19, 4075. [Google Scholar] [CrossRef] [PubMed]
- Johnston, W.; O’Reilly, M.; Argent, R.; Caulfield, B. Reliability, Validity and Utility of Inertial Sensor Systems for Postural Control Assessment in Sport Science and Medicine Applications: A Systematic Review. Sports Med. 2019, 49, 783–818. [Google Scholar] [CrossRef] [PubMed]
- Cavanaugh, J.T.; Guskiewicz, K.M.; Stergiou, N. A Nonlinear Dynamic Approach for Evaluating Postural Control: New Directions for the Management of Sport-Related Cerebral Concussion. Sports Med. 2005, 35, 935–950. [Google Scholar] [CrossRef]
- Ivanenko, Y.; Gurfinkel, V.S. Human Postural Control. Front. Neurosci. 2018, 12, 171. [Google Scholar] [CrossRef]
- Rhea, C.K.; Silver, T.A.; Hong, S.L.; Ryu, J.H.; Studenka, B.E.; Hughes, C.M.L.; Haddad, J.M. Noise and Complexity in Human Postural Control: Interpreting the Different Estimations of Entropy. PLoS ONE 2011, 6, e17696. [Google Scholar] [CrossRef]
- Donker, S.F.; Roerdink, M.; Greven, A.J.; Beek, P.J. Regularity of Center-of-Pressure Trajectories Depends on the Amount of Attention Invested in Postural Control. Exp. Brain Res. 2007, 181, 1–11. [Google Scholar] [CrossRef]
- Lubetzky, A.V.; Harel, D.; Lubetzky, E. On the Effects of Signal Processing on Sample Entropy for Postural Control. PLoS ONE 2018, 13, e0193460. [Google Scholar] [CrossRef]
- Federolf, P.; Zandiyeh, P.; von Tscharner, V. Time Scale Dependence of the Center of Pressure Entropy: What Characteristics of the Neuromuscular Postural Control System Influence Stabilographic Entropic Half-Life? Exp. Brain Res. 2015, 233, 3507–3515. [Google Scholar] [CrossRef]
- Haid, T.; Federolf, P. Human Postural Control: Assessment of Two Alternative Interpretations of Center of Pressure Sample Entropy through a Principal Component Factorization of Whole-Body Kinematics. Entropy 2018, 20, 30. [Google Scholar] [CrossRef]
- Backes, A.; Gupta, T.; Schmitz, S.; Fagherazzi, G.; van Hees, V.; Malisoux, L. Advanced Analytical Methods to Assess Physical Activity Behavior Using Accelerometer Time Series: A Scoping Review. Scand. J. Med. Sci. Sports 2022, 32, 18–44. [Google Scholar] [CrossRef] [PubMed]
- Kędziorek, J.; Błażkiewicz, M. Nonlinear Measures to Evaluate Upright Postural Stability: A Systematic Review. Entropy 2020, 22, 1357. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.; Wei, Q.; Shieh, J.-S.; Fourcade, P.; Isableu, B.; Majed, L. Sample Entropy, Univariate, and Multivariate Multi-Scale Entropy in Comparison with Classical Postural Sway Parameters in Young Healthy Adults. Front. Hum. Neurosci. 2017, 11, 206. [Google Scholar] [CrossRef]
- Fischer, O.M.; Missen, K.J.; Tokuno, C.D.; Carpenter, M.G.; Adkin, A.L. Postural Threat Increases Sample Entropy of Postural Control. Front. Neurol. 2023, 14, 1179237. [Google Scholar] [CrossRef]
- Hita-Contreras, F.; Martínez-Amat, A.; Lomas-Vega, R.; Álvarez, P.; Mendoza, N.; Romero-Franco, N.; Aránega, A. Relationship of Body Mass Index and Body Fat Distribution with Postural Balance and Risk of Falls in Spanish Postmenopausal Women. Menopause 2013, 20, 202–208. [Google Scholar] [CrossRef]
- Kang, H. Sample Size Determination and Power Analysis Using the G*Power Software. J. Educ. Eval. Health Prof. 2021, 18, 1–12. [Google Scholar] [CrossRef]
- Larsen, M.N.; Krustrup, P.; Araújo Póvoas, S.C.; Castagna, C. Accuracy and Reliability of the InBody 270 Multi-Frequency Body Composition Analyser in 10–12-Year-Old Children. PLoS ONE 2021, 16, e0247362. [Google Scholar] [CrossRef]
- Pinho, A.S.; Salazar, A.P.; Hennig, E.M.; Spessato, B.C.; Domingo, A.; Pagnussat, A.S. Can We Rely on Mobile Devices and Other Gadgets to Assess the Postural Balance of Healthy Individuals? A Systematic Review. Sensors 2019, 19, 2972. [Google Scholar] [CrossRef]
- Promsri, A.; Haid, T.; Federolf, P. How Does Lower Limb Dominance Influence Postural Control Movements during Single Leg Stance? Hum. Mov. Sci. 2018, 58, 165–174. [Google Scholar] [CrossRef]
- de Morree, H.M.; Marcora, S.M. Psychobiology of Perceived Effort During Physical Tasks. In Handbook of Biobehavioral Approaches to Self-Regulation; Springer: New York, NY, USA, 2015; pp. 255–270. [Google Scholar]
- Kosse, N.M.; Caljouw, S.; Vervoort, D.; Vuillerme, N.; Lamoth, C.J.C.C. Validity and Reliability of Gait and Postural Control Analysis Using the Tri-Axial Accelerometer of the IPod Touch. Ann. Biomed. Eng. 2015, 43, 1935–1946. [Google Scholar] [CrossRef]
- Promsri, A.; Bangkomdet, K.; Jindatham, I.; Jenchang, T. Leg Dominance—Surface Stability Interaction: Effects on Postural Control Assessed by Smartphone-Based Accelerometry. Sports 2023, 11, 75. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed]
- Tochigi, Y.; Segal, N.A.; Vaseenon, T.; Brown, T.D. Entropy Analysis of Tri-Axial Leg Acceleration Signal Waveforms for Measurement of Decrease of Physiological Variability in Human Gait. J. Orthop. Res. 2012, 30, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Estrada, L.; Torres, A.; Sarlabous, L.; Jané, R. Influence of Parameter Selection in Fixed Sample Entropy of Surface Diaphragm Electromyography for Estimating Respiratory Activity. Entropy 2017, 19, 460. [Google Scholar] [CrossRef]
- Napoli, C.D.; Helfer, K.S.; van Emmerik, R.E.A. Postural Complexity during Listening in Young and Middle-Aged Adults. Entropy 2022, 24, 762. [Google Scholar] [CrossRef]
- Hytönen, M.; Pyykkö, I.; Aalto, H.; Starck, J. Postural Control and Age. Acta Oto Laryngol. 1993, 113, 119–122. [Google Scholar] [CrossRef]
- Olsson, F.; Halvorsen, K.; Aberg, A.C. Neuromuscular Controller Models for Quantifying Standing Balance in Older People: A Systematic Review. IEEE Rev. Biomed. Eng. 2023, 16, 560–578. [Google Scholar] [CrossRef]
- Chen, L.; Nelson, D.R.; Zhao, Y.; Cui, Z.; Johnston, J.A. Relationship between Muscle Mass and Muscle Strength, and the Impact of Comorbidities: A Population-Based, Cross-Sectional Study of Older Adults in the United States. BMC Geriatr. 2013, 13, 74. [Google Scholar] [CrossRef]
- Voß, M.; Zieschang, T.; Schmidt, L.; Hackbarth, M.; Koschate, J.; Stuckenschneider, T. Reduced Adaptability to Balance Perturbations in Older Adults with Probable Cognitive Impairment after a Severe Fall. PLoS ONE 2024, 19, e0305067. [Google Scholar] [CrossRef]
- Promsri, A. Modulation of Bilateral Lower-Limb Muscle Coordination When Performing Increasingly Challenging Balance Exercises. Neurosci. Lett. 2022, 767, 136299. [Google Scholar] [CrossRef]
- Weirich, G.; Bemben, D.A.; Bemben, M.G. Predictors of Balance in Young, Middle-Aged, and Late Middle-Aged Women. J. Geriatr. Phys. Ther. 2010, 33, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Muehlbauer, T.; Kibele, A.; Granacher, U. Effects of Strength Training Using Unstable Surfaces on Strength, Power and Balance Performance Across the Lifespan: A Systematic Review and Meta-Analysis. Sports Med. 2015, 45, 1645–1669. [Google Scholar] [CrossRef] [PubMed]
- Van Criekinge, T.; Saeys, W.; Vereeck, L.; De Hertogh, W.; Truijen, S. Are Unstable Support Surfaces Superior to Stable Support Surfaces during Trunk Rehabilitation after Stroke? A Systematic Review. Disabil. Rehabil. 2018, 40, 1981–1988. [Google Scholar] [CrossRef] [PubMed]
- Proske, U. What Is the Role of Muscle Receptors in Proprioception? Muscle Nerve 2005, 31, 780–787. [Google Scholar] [CrossRef]
- Proske, U.; Gandevia, S.C. The Proprioceptive Senses: Their Roles in Signaling Body Shape, Body Position and Movement, and Muscle Force. Physiol. Rev. 2012, 92, 1651–1697. [Google Scholar] [CrossRef]
- Cimadoro, G.; Paizis, C.; Alberti, G.; Babault, N. Effects of Different Unstable Supports on EMG Activity and Balance. Neurosci. Lett. 2013, 548, 228–232. [Google Scholar] [CrossRef]
Young (n = 24) | Middle Age (n = 24) | p-Value | Effect Size | |
---|---|---|---|---|
Age (years) | 23.9 ± 5.3 | 51.4 ± 5.9 | <0.001 * | 4.903 |
Weight (kg) | 51.4 ± 10.0 | 59.8 ± 10.5 | 0.088 | 0.819 |
Height (cm) | 156.9 ± 4.5 | 153.5 ± 8.7 | 0.094 | 0.490 |
Body mass index (BMI, kg/m2) | 22.2 ± 4.2 | 25.6 ± 5.1 | 0.016 * | 0.727 |
Body fat (%) | 31.6 ± 5.9 | 34.6 ± 5.8 | 0.088 | 0.512 |
Fat-free mass (%) | 68.4 ± 5.9 | 65.4 ± 5.8 | 0.088 | 0.512 |
Muscle mass (%) | 36.2 ± 3.7 | 36.2 ± 5.5 | 0.988 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Promsri, A.; Pitiwattanakulchai, P.; Saodan, S.; Thiwan, S. Age-Related Changes in Postural Stability in Response to Varying Surface Instability in Young and Middle-Aged Adults. Sensors 2024, 24, 6846. https://doi.org/10.3390/s24216846
Promsri A, Pitiwattanakulchai P, Saodan S, Thiwan S. Age-Related Changes in Postural Stability in Response to Varying Surface Instability in Young and Middle-Aged Adults. Sensors. 2024; 24(21):6846. https://doi.org/10.3390/s24216846
Chicago/Turabian StylePromsri, Arunee, Punnakan Pitiwattanakulchai, Siwaporn Saodan, and Salinrat Thiwan. 2024. "Age-Related Changes in Postural Stability in Response to Varying Surface Instability in Young and Middle-Aged Adults" Sensors 24, no. 21: 6846. https://doi.org/10.3390/s24216846
APA StylePromsri, A., Pitiwattanakulchai, P., Saodan, S., & Thiwan, S. (2024). Age-Related Changes in Postural Stability in Response to Varying Surface Instability in Young and Middle-Aged Adults. Sensors, 24(21), 6846. https://doi.org/10.3390/s24216846