Flowrate Sensing and Measurement in Portable Smart Inhalers
Abstract
:1. Introduction
2. Inhalation Flowrate
3. Inhalation Technique Training
3.1. 2Tone Inhaler Trainer
3.2. Clement Clarke pMDI Add-Ons
3.3. DPI Whistling Trainers
4. Inhalation Flowrate Measurement
4.1. Inhaler Compliance Assessment Device
4.2. Sagentia Innovation VeriHaler
4.3. Tone Elements
4.4. Amiko Respiro
4.5. Intelligent Control Inhaler
4.6. Teva Digihaler
4.7. Sensirion Inhaler Clip-On
4.8. Adherium Hailie
4.9. CapMedic
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Asthma and Respiratory Foundation NZ (ARFNZ). Asthma. Available online: https://www.asthmafoundation.org.nz/your-health/living-with-asthma (accessed on 14 January 2024).
- Environmental Health Intelligence New Zealand (EHINZ). Environmental Health Indicators—Indoor Environment—Asthma. Available online: https://www.ehinz.ac.nz/indicators/indoor-environment/asthma/ (accessed on 14 January 2024).
- Asthma and Respiratory Foundation NZ (ARFNZ). Key statistics|Asthma Foundation NZ. Available online: https://www.asthmafoundation.org.nz/research/key-statistics (accessed on 14 January 2024).
- Kocks, J.; Chrystyn, H.; van der Palen, J.; Thomas, M.; Yates, L.; Landis, S.; Driessen, M.; Gokhale, M.; Sharma, R.; Molimard, M. Systematic review of association between critical errors in inhalation and health outcomes in asthma and COPD. NPJ Prim. Care Respir. Med. 2018, 28, 43. [Google Scholar] [CrossRef] [PubMed]
- Usmani, O.; Lavorini, F.; Marshall, J.; Dunlop, W.; Heron, L.; Farrington, E.; Dekhuijzen, R. Critical inhaler errors in asthma and COPD: A systematic review of impact on health outcomes. Respir. Res. 2018, 19, 10. [Google Scholar] [CrossRef]
- Haidl, P.; Heindl, S.; Siemon, K.; Bernacka, M.; Cloes, R. Inhalation device requirements for patients’ inhalation maneuvers. Respir. Med. 2016, 118, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, D. Smart Inhalers: Will They Help to Improve Asthma Care? Pharm. J. 2017, 298, 7900. Available online: https://pharmaceutical-journal.com/article/feature/smart-inhalers-will-they-help-to-improve-asthma-care (accessed on 15 January 2024).
- GoodRx. Smart Inhalers: A Review of Smart Inhalers. Available online: https://www.goodrx.com/conditions/asthma/smart-inhalers-review (accessed on 14 January 2024).
- Eikholt, A.; Wiertz, M.; Hew, M. Electronic monitoring devices to support inhalation technique in patients with asthma: A narrative review. Curr. Treat. Options Allergy 2023, 10, 28–52. [Google Scholar] [CrossRef]
- Xiroudaki, S.; Schoubben, A.; Giovagnoli, S.; Rekkas, D. Dry powder inhalers in the digitalization era: Current status and future perspectives. Pharmaceutics 2021, 13, 1455. [Google Scholar] [CrossRef] [PubMed]
- Häußermann, S.; Arendsen, L.; Pritchard, J. Smart dry powder inhalers and intelligent adherence management. Adv. Drug Deliv. Rev. 2022, 12, 114580. [Google Scholar] [CrossRef]
- Chrystyn, H.; Audibert, R.; Keller, M.; Quaglia, B.; Vecellio, L.; Roche, N. Real-life inhaler adherence and technique: Time to get smarter! Respir. Med. 2019, 158, 24–32. [Google Scholar] [CrossRef]
- Hancox, R.; Jones, S.; Baggott, C.; Chen, D.; Corna, N.; Davies, C.; Fingleton, J.; Hardy, J.; Hussain, S.; Poot, B.; et al. New Zealand COPD Guidelines: Quick Reference Guide. Available online: https://www.asthmafoundation.org.nz/health-professionals/management-guidelines/nz-copd-guidelines (accessed on 14 January 2024).
- Yang, I.; George, J.; McDonald, C.; McDonald, V.; Ordman, R.; Goodwin, A.; Smith, B.; McNamara, R.; Zwar, N.; Dabscheck, E. The COPD-X Plan Australian and New Zealand Guidelines for the Management of Chronic Obstructive Pulmonary Disease 2023. Available online: https://copdx.org.au/copd-x-plan/ (accessed on 14 January 2024).
- Usmani, O. Choosing the right inhaler for your asthma or COPD patient. Ther. Clin. Risk Manag. 2019, 15, 461–472. [Google Scholar] [CrossRef]
- Hua, J.; Ye, X.; Du, C.; Xie, N.; Zhang, J.; Li, M.; Zhang, J. Optimizing inhalation therapy in the aspect of peak inhalation flow rate in patients with chronic obstructive pulmonary disease or asthma. BMC Pulm. Med. 2021, 21, 302. [Google Scholar] [CrossRef]
- Bosnic-Anticevich, S.; Chrystyn, H.; Costello, R.; Dolovich, M.; Fletcher, M.; Lavorini, F.; Rodríguez-Roisin, R.; Ryan, D.; Wan Yau Ming, S.; Price, D. The use of multiple respiratory inhalers requiring different inhalation techniques has an adverse effect on COPD outcomes. Int. J. Chronic Obstr. Pulm. Dis. 2016, 21, 59–71. [Google Scholar] [CrossRef]
- Janson, C.; Loof, T.; Telg, G.; Stratelis, G. Impact of inhalation flow, inhalation volume and critical handling errors on delivered Budesonide/Formoterol dose in different inhalers: An in vitro study. Pulm. Ther. 2017, 3, 243–253. [Google Scholar] [CrossRef]
- Weers, J.; Clark, A. The Impact of inspiratory flow rate on drug delivery to the lungs with dry powder inhalers. Pharm. Res. 2017, 34, 507–528. [Google Scholar] [CrossRef]
- Colthorpe, P.; Voshaar, T.; Kieckbusch, T.; Cuoghi, E.; Jauernig, J. Delivery characteristics of a low-resistance dry-powder inhaler used to deliver the long-acting muscarinic antagonist glycopyrronium. J. Drug Assess. 2013, 2, 11–16. [Google Scholar] [CrossRef]
- Lavorini, F.; Pistolesi, M.; Usmani, O. Recent advances in capsule-based dry powder inhaler technology. Multidiscip. Respir. Med. 2017, 12, 11. [Google Scholar] [CrossRef]
- Talaat, M.; Si, X.; Xi, J. Lower inspiratory breathing depth enhances pulmonary delivery efficiency of ProAir sprays. Pharmaceuticals 2022, 15, 706. [Google Scholar] [CrossRef]
- Dastoorian, F.; Pakzad, L.; Kozinski, J.; Behzadfar, E. A CFD investigation on the aerosol drug delivery in the mouth–throat airway using a pressurized metered-dose inhaler device. Processes 2022, 10, 1230. [Google Scholar] [CrossRef]
- Yang, M.; Verschuer, J.; Shi, Y.; Song, Y.; Katsifis, A.; Eberl, S.; Wong, K.; Brannan, J.; Cai, W.; Finlay, W.; et al. The effect of device resistance and inhalation flow rate on the lung deposition of orally inhaled mannitol dry powder. Int. J. Pharm. 2016, 513, 294–301. [Google Scholar] [CrossRef]
- Koullapis, P.; Kassinos, S.; Bivolarova, M.; Melikov, A. Particle deposition in a realistic geometry of the human conducting airways: Effects of inlet velocity profile, inhalation flowrate and electrostatic charge. J. Biomech. 2016, 49, 2201–2212. [Google Scholar] [CrossRef] [PubMed]
- Sensirion AG. Flow Measurement in Smart Medical Inhalers. Available online: https://www.techbriefs.com/component/content/article/45965-flow-measurement-in-smart-medical-inhalers (accessed on 15 January 2024).
- Clark, A.; Weers, J.; Dhand, R. The confusing world of dry powder inhalers: It is all about inspiratory pressures, not inspiratory flow rates. J. Aerosol Med. Pulm. Drug Deliv. 2020, 33, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Duarte-de Araújo, A.; Teixeira, P.; Hespanhol, V.; Correia-de Sousa, J. COPD: Misuse of inhaler devices in clinical practice. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 1209–1217. [Google Scholar] [CrossRef]
- Al-Woraf, Y. Evaluation of inhaler technique among patients with asthma and COPD in Yemen. J. Taibah Univ. Med. Sci. 2018, 13, 488–490. [Google Scholar] [CrossRef]
- DeWeerdt, S. Environmental concerns and the perennial problem of poor inhaler technique are driving change in the devices used to deliver respiratory drugs. Nature Outlook 2020, 581, S14–S17. [Google Scholar] [CrossRef]
- Sobh, A.; Rabea, H.; Hamouda, M.; Shawky, F.; Abdelrahim, M. Impact of repeated patient counseling using different pressurized metered-dose inhalers training devices on inhalation technique, lung function, and asthma control in adult asthmatics. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 88. [Google Scholar] [CrossRef]
- Fortescue, R.; Kew, K.; Mathioudakis, A. Interventions to improve inhaler technique for people with asthma. Cochrane Database Syst. Rev. 2017, 3, CD012286. [Google Scholar]
- Canday Medical Ltd. 2Tone Trainer—The Metered Dose Inhaler (MDI) Training Device. Available online: http://2tonetrainer.net/index.html (accessed on 30 January 2024).
- Al-Showair, R.; Pearson, S.; Chrystyn, H. Maintenance of good inhalation technique for metered dose inhalers (MDIs) by using a two-tone trainer. In Proceedings of the American Thoracic Society 2005 International Conference, San Diego, CA, USA, 20–25 May 2005. [Google Scholar]
- Al-Showair, R.; Pearson, S.; Chrystyn, H. The potential of a 2Tone trainer to help patients use their metered-dose inhalers. Chest 2007, 131, 1776–1782. [Google Scholar] [CrossRef]
- Tarsin, W.; Hshad, N.; Elshamli, I.; Soussi, M.; Chrystyn, H. Training patients on how to use metered dose inhaler (MDI) by using the 2Tone will improve asthma quality of life (AQOL). In Proceedings of the 9th Maghreebean Congress of Asthma and Clinical Allergy, Berlin, Germany, 2–5 November 2007. [Google Scholar]
- Ammari, W.; Chrystyn, H. Optimizing the inhalation flow and technique through metered dose inhalers of asthmatic adults and children attending a community pharmacy. J. Asthma 2013, 50, 505–513. [Google Scholar] [CrossRef]
- Flexicare. Inhaler Trainers • Clement Clarke • Flexicare. Available online: https://flexicare.com/en-us/product-category/inhaler-technique/train/ (accessed on 30 January 2024).
- Ammari, W.; Obeidat, N.; Anani, A.; AlKalbani, R.; Sanders, M. Evaluation of Trainhaler and Flo-Tone Cr training devices to help adults with asthma optimize their pressurized metered dose inhaler technique and inhalation flow. Am. J. Respir. Crit. Care Med. 2017, 195, A3004. [Google Scholar]
- Nicola, M.; Elberry, A.; Sayed, O.; Hussein, R.; Saeed, H.; Abdelrahim, M. The impact of adding a training device to familiar counselling on inhalation technique and pulmonary function of asthmatics. Adv. Ther. 2018, 35, 1049–1058. [Google Scholar] [CrossRef] [PubMed]
- Tony, S.; Abdelrahman, M.; Osama, H.; Abdelrahim, M. Advanced counselling using training device and smartphone application on inhalation technique from metered-dose inhaler with spacer equipped with different interfaces in asthmatic children. Int. J. Clin. Pract. 2021, 75, e14413. [Google Scholar] [CrossRef] [PubMed]
- Tony, S.; Abdelrahman, M.; Osama, H.; Elgendy, M.; Abdelrahim, M. The effect of adding a training device and smartphone application to traditional verbal counseling in asthmatic children. Pulm. Ther. 2021, 7, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Tony, S.; Abdelrahman, M.; Elsalam, M.; Shafik, M.; Abdelrahim, M. Effect of using acoustic flo-tone training device and its smartphone application on enhancing inhalation technique from metered-dose inhaler with spacer in asthmatic children. Exp. Lung Res. 2022, 48, 224–238. [Google Scholar] [CrossRef] [PubMed]
- Sobh, A.; Rabea, H.; Hamouda, M.; Shawky, F.; Saeed, H.; Abdelrahim, M. The impact of using different add-on devices to pressurized metered-dose-inhalers containing salbutamol in healthy adult volunteers: An in-vivo study. J. Drug Deliv. Sci. Technol. 2022, 74, 103539. [Google Scholar] [CrossRef]
- Holmes, M.; Menn, M.; D’Arcy, S.; Rapcan, V.; MacHale, E.; Costello, R.; Reilly, R. Automatic identification and accurate temporal detection of inhalations in asthma inhaler recordings. In Proceedings of the Annual International Conference of the IEEE EMBS, San Diego, CA, USA, 28 August–1 September 2012. [Google Scholar]
- Holmes, M.; Seheult, J.; Geraghty, C.; D’Arcy, S.; Costello, R.; Reilly, R. Using acoustics to estimate inspiratory flow rate and drug removed from a dry powder inhaler. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013. [Google Scholar]
- Seheult, J.; Holmes, M.; Geraghty, C.; Costello, R.; Hughes, C.; Keane, F.; Reilly, R. Validation of an acoustic device for the real-time monitoring of inhalational technique and correlation with drug delivery from a Diskus inhaler. Am. J. Respir. Crit. Care Med. 2013, 187, A1930. [Google Scholar]
- Holmes, M.; D’Arcy, S.; Costello, R.; Reilly, R. An acoustic method of automatically evaluating patient inhaler technique. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013. [Google Scholar]
- Holmes, M.; Seheult, J.; Geraghty, C.; D’Arcy, S.; O’Brien, U.; O’Connell, G.; Costello, R.; Reilly, R. A method of estimating inspiratory flow rate and volume from an inhaler using acoustic measurements. Physiol. Meas. 2013, 34, 903–914. [Google Scholar] [CrossRef]
- Holmes, M.; D’arcy, S.; Costello, R.; Reilly, R. Acoustic analysis of inhaler sounds from community-dwelling asthmatic patients for automatic assessment of adherence. IEEE J. Transl. Eng. Health Med. 2014, 11, 2700210. [Google Scholar] [CrossRef]
- D’Arcy, S.; MacHale, E.; Seheult, J.; Holmes, M.; Hughes, C.; Sulaiman, I.; Hyland, D.; O’Reilly, C.; Glynn, S.; Al-Zaabi, T.; et al. A method to assess adherence in inhaler use through analysis of acoustic recordings of inhaler events. PLoS ONE 2014, 9, e98701. [Google Scholar] [CrossRef]
- Seheult, J.; O’Connell, P.; Chun Tee, K.; Bholah, T.; Bannai, H.; Sulaiman, I.; MacHale, E.; D’Arcy, S.; Holmes, M.; Bergin, D.; et al. The acoustic features of inhalation can be used to quantify aerosol delivery from a Diskus™ dry powder inhaler. Pharm. Res. 2014, 31, 2735–2747. [Google Scholar] [CrossRef] [PubMed]
- Taylor, T.; Holmes, M.; Sulaiman, I.; Costello, R.; Reilly, R. Monitoring inhaler inhalations using an acoustic sensor proximal to inhaler devices. J. Aerosol Med. Pulm. Drug Deliv. 2016, 29, 439–446. [Google Scholar] [CrossRef]
- Sulaiman, I.; Hale, E.; Holmes, M.; Hughes, C.; D’Arcy, S.; Taylor, T.; Rapcan, V.; Doyle, F.; Breathnach, A.; Seheult, J.; et al. A protocol for a randomised clinical trial of the effect of providing feedback on inhaler technique and adherence from an electronic device in patients with poorly controlled severe asthma. BMJ Open 2016, 6, e009350. [Google Scholar] [CrossRef]
- O’Dwyer, S.; MacHale, E.; Sulaiman, I.; Holmes, M.; Hughes, C.; D’Arcy, S.; Rapcan, V.; Taylor, T.; Boland, F.; Bosnic-Anticevich, S.; et al. The effect of providing feedback on inhaler technique and adherence from an electronic audio recording device, INCA®, in a community pharmacy setting: Study protocol for a randomised controlled trial. Trials 2016, 17, 226. [Google Scholar] [CrossRef] [PubMed]
- Hale, E.; Greene, G.; Mulvey, C.; Mokoka, M.; van Boven, J.; Cushen, B.; Sulaiman, I.; Brennan, V.; Kerr, P.; Reilly, R. Use of digital measurement of medication adherence and lung function to guide the management of uncontrolled asthma (INCA Sun): A multicentre, single-blinded, randomised clinical trial. Lancet. Respir. Med. 2023, 11, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Hesso, I.; Nabhani-Gebara, S.; Kayyali, R. Objective assessment of adherence and inhaler technique among asthma and COPD patients in London: A study in community pharmacies using an electronic monitoring device. Pharmacy 2023, 11, 94. [Google Scholar] [CrossRef]
- Li, Y.; Bohr, A.; Jensen, H.; Rantanen, J.; Cornett, C.; Beck-Broichsitter, M.; Bøtker, J. Medication tracking: Design and fabrication of a dry powder inhaler with integrated acoustic element by 3D printing. Pharm. Res. 2020, 37, 2755–2758. [Google Scholar] [CrossRef]
- Braido, F.; Paa, F.; Ponti, L.; Canonica, G. A new tool for inhalers’ use and adherence monitoring: The Amiko® validation trial. Int. J. Eng. Res. Sci. 2016, 2, 2395–6992. [Google Scholar]
- Rogueda, P.; Grinovero, M.; Ponti, L.; Purkins, G.; Croad, O. Telehealth ready: Performance of the Amiko Respiro Sense connected technology with Merxin DPIs. J. Aerosol. Med. Pulm. Drug Deliv. 2019, 32, A26. [Google Scholar]
- Sloots, J.; Bakker, M.; van der Palen, J.; Eijsvogel, M.; van der Valk, P.; Linssen, G.; van Ommeren, C.; Grinovero, M.; Tabak, M.; Effing, T.; et al. Adherence to an eHealth self-management intervention for patients with both COPD and heart failure: Results of a pilot study. Int. J. Chronic Obstr. Pulm. Dis. 2021, 15, 2089–2103. [Google Scholar] [CrossRef]
- 3M Drug Delivery Systems. 3M News Center—Press Releases. 2016. Available online: https://news.3m.com/2016-04-19-3M-Unveils-Intelligent-Inhaler-Designed-to-Help-Control-Spiraling-Costs-of-Respiratory-Disease#assets_all (accessed on 5 February 2024).
- 3M Drug Delivery Systems. Industry Recognition for 3M’s Smart Inhaler. 2016. Available online: https://www.3m.co.uk/3M/en_GB/health-care-uk/stories/full-story/?storyid=0435d96d-8c27-4c9a-b6cd-d5ac72b80ac7 (accessed on 5 February 2024).
- 3M. (23) 3M’s Intelligent Control Inhaler wins Excellence in Drug Delivery Devices Award at CPhI | LinkedIn. 2016. Available online: https://www.linkedin.com/pulse/3ms-intelligent-control-inhaler-wins-excellence-drug-delivery-harris (accessed on 5 February 2024).
- Needham, M.; Cocks, P.; Righton, L. Next-generation pressurised metered dose inhalers: A holistic, patient-centred approach to sustainability. ONdrugDelivery 2020, 112, 10–13. [Google Scholar]
- Teva Respiratory, LLC. Digihaler Support Site Home. Available online: https://www.digihaler.com/support (accessed on 4 February 2024).
- Safioti, G.; Granovsky, L.; Li, T.; Reich, M.; Cohen, S.; Hadar, Y.; Pleasants, R.; Chrystyn, H.; Hill, T.; DePietro, M. A predictive model for clinical asthma exacerbations using Albuterol eMDPI (ProAir Digihaler): A twelve-Week, open-label study. Iproc 2019, 5, e15173. [Google Scholar] [CrossRef]
- Lugogo, N.; DePietro, M.; Reich, M.; Merchant, R.; Chrystyn, H.; Pleasants, R.; Granovsky, L.; Li, T.; Hill, T.; Brown, R.; et al. A predictive machine learning tool for asthma exacerbations: Results from a 12-week, open-label study using an electronic multi-dose dry powder inhaler with integrated sensors. J. Asthma Allergy 2022, 11, 1623–1637. [Google Scholar] [CrossRef]
- Hoyte, F.; Mosnaim, G.; Rogers, L.; Safioti, G.; Brown, R.; Li, T.; DePietro, M.; Reich, M.; Hill, T.; Wechsler, M. Effectiveness of a digital inhaler system for patients with asthma: A 12-week, open-label, randomized study (CONNECT1). J. Allergy Clin. Immunol. Pract. 2022, 11, 1334. [Google Scholar] [CrossRef] [PubMed]
- Zipkes, C.; Alt, A. Determination of Air Flow Rate through an Inhaler. U.S. Patent 20200155773, 19 November 2018. [Google Scholar]
- Adherium Limited. Adherium—Adherium Unveils New FDA-Cleared Smartinhaler® Compatible with Airsupra® and Breztri® Inhalation Devices. 2021. Available online: https://www.adherium.com/news/adherium-unveils-new-fda-cleared-smartinhaler-compatible-with-airsupra-and-breztri-inhalation-devices/ (accessed on 25 July 2024).
- Cognita Labs. CapMedic—Simplifying Respiratory Care by Correct and Regular Inhaler Use. Available online: https://capmedicinhaler.com/ (accessed on 25 July 2024).
- Biswas, R.; Patel, G.; Mohsin, A.; Hanania, N.; Sabharwal, A. Measuring competence in metered dose inhaler use using Capmedic electronic inhaler monitoring tool. Chest 2016, 150, 14A. [Google Scholar] [CrossRef]
- Paronyan, E.; Landon, C.; Biswas, R.; Wicklund, H.; Wallace, K.; Thompson, A. Utilizing Capmedic electronic device to measure and improve inhaler technique in clinic. Am. J. Respir. Crit. Care Med. 2020, 201, A4786. [Google Scholar]
Device / Approach | Developer | Status | Device Type | Key Features | Advantages and Drawbacks |
---|---|---|---|---|---|
2Tone Inhaler Trainer | Canday Medical Ltd., Newmarket, Suffolk, UK | Commercially available | pMDI Trainer | Passive acoustic component | (+) Simple construction, provides real-time and clear feedback on the PIFR (–) Does not deliver medicine, does not take measurements, noisy |
Flo-Tone, Flo-Tone CR, Clip-on | Clement Clarke, Bury St Edmunds, Suffolk, UK | Commercially available | pMDI Trainer | Passive acoustic component | (+) Simple construction, provides real-time and clear feedback on the PIFR (–) Does not deliver medicine, does not take measurements, noisy |
Turbuhaler Training Device | AstraZeneca AB, Södertälje, Sweden | Commercially available | DPI Trainer | Passive acoustic component | (+) Simple construction, provides real-time and clear feedback on the PIFR (–) Does not deliver medicine, does not take measurements, noisy |
Accuhaler Inhalation Training Device | Glaxo Group Ltd., Brentford, Middlesex, UK | Commercially available | DPI Trainer | Passive acoustic component | (+) Simple construction, provides real-time and clear feedback on the PIFR (–) Does not deliver medicine, does not take measurements, noisy |
Ellipta Inhalation Trainer | Glaxo Group Ltd., Brentford, Middlesex, UK | Commercially available | DPI Trainer | Passive acoustic component | (+) Simple construction, provides real-time and clear feedback on the PIFR (–) Does not deliver medicine, does not take measurements, noisy |
Device / Approach | Developer | Status | Device Type | Key Features | Advantages and Drawbacks |
---|---|---|---|---|---|
INCA | INCA Team | Passed in-vivo trials, but not available commercially | DPI | Acoustic analysis | (+) High accuracy in event detection (–) Challenges with artifact interference |
VeriHaler | Sagentia Innovation, Harston, Cambridge, UK | Under development and trials | pMDI and DPI | Acoustic analysis, Noise cancellation algorithm | (+) Platform works with both pMDI and DPI (–) Still in development, no design details and in-vivo test data |
Tone Elements | University of Copenhagen, Copenhagen, Denmark | Prototyped concept | DPI | Passive acoustic component | (+) Good correlation with airflow rate (–) Requires changes in the airflow passage and FDA approval |
Amiko Respiro RS01X | Berry Global Inc., Evansville, IN, USA | Commercially available | DPI | Pressure sensor, Machine Learning | (+) Platform works with a variety of inhalers (–) No in-vivo test data available, no other device within platform commercially available |
Intelligent Control Inhaler | Kindeva Drug Delivery, St. Paul, MN, USA | Under development | Unknown, but sketches refer to DPI | Regulates inhalation flowrate | (+) Integrated screen, mobile app (–) Not yet launched, no research activity |
Digihaler | Teva Respiratory, Parsippany, NJ, USA | Commercially available but discontinue soon | DPI | Pressure sensor, FDA approved | (+) The only robust and efficiency-proved solution available commercially (–) Expensive, single-use design |
Inhaler Clip-on | Sensirion AG, Stäfa, Switzerland | Patented, but not available commercially | pMDI | Pressure sensor, does not require FDA approval | (+) No interference with inhaler function (–) Costly sensor, no in-vivo test data available |
Adherium’s Hailie | Adherium Ltd., Auckland, New Zealand | Received FDA clearance | pMDI | Unknown | (+) Based on robust existing platform for add-ons without physiological measures (–) Not yet launched |
CapMedic | Cognita Labs, Santa Cruz, CA, USA | Commercially available | pMDI | Spirometer | (+) Clinical grade accuracy declared (–) Subscription-only service, not many evidence of device efficiency |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mysovskikh, I.; Legg, M.; Demidenko, S. Flowrate Sensing and Measurement in Portable Smart Inhalers. Sensors 2024, 24, 6848. https://doi.org/10.3390/s24216848
Mysovskikh I, Legg M, Demidenko S. Flowrate Sensing and Measurement in Portable Smart Inhalers. Sensors. 2024; 24(21):6848. https://doi.org/10.3390/s24216848
Chicago/Turabian StyleMysovskikh, Ivan, Mathew Legg, and Serge Demidenko. 2024. "Flowrate Sensing and Measurement in Portable Smart Inhalers" Sensors 24, no. 21: 6848. https://doi.org/10.3390/s24216848
APA StyleMysovskikh, I., Legg, M., & Demidenko, S. (2024). Flowrate Sensing and Measurement in Portable Smart Inhalers. Sensors, 24(21), 6848. https://doi.org/10.3390/s24216848