Auto Aligning, Error-Compensated Broadband Collimated Transmission Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Samples for Validation
2.3. Multiple Reflections in Plane-Parallel Samples
2.4. Automated Self-Centering Algorithm
2.5. Monte Carlo Method Used for Verification
3. Results
3.1. Errors Caused by Multireflection
3.2. Error Due to Forward Scattering
3.3. Examinations to Determine the Optimal Transmission Range
3.4. Experimental Validation of the System
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stocker, S.; Foschum, F.; Krauter, P.; Bergmann, F.; Hohmann, A.; Scalfi Happ, C.; Kienle, A. Broadband optical properties of milk. Appl. Spectrosc. 2017, 71, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Chantrapornchai, W.; Clydesdale, F.; McClements, D. Influence of relative refractive index on optical properties of emulsions. Food Res. Int. 2001, 34, 827–835. [Google Scholar] [CrossRef]
- Bailey, E.D.; Nichols, J.B.; Kraemer, E.O. Particle size and optical properties of emulsions. J. Phys. Chem. 2002, 40, 1149–1155. [Google Scholar] [CrossRef]
- Michels, R.; Foschum, F.; Kienle, A. Optical properties of fat emulsions. Opt. Express 2008, 16, 5907–5925. [Google Scholar] [CrossRef] [PubMed]
- Driver, I.; Feather, J.; King, P.; Dawson, J. The optical properties of aqueous suspensions of Intralipid, a fat emulsion. Phys. Med. Biol. 1989, 34, 1927. [Google Scholar] [CrossRef]
- Dalgleish, D.G. Food emulsions. In Encyclopedic Handbook of Emulsion Technology; CRC Press: Boca Raton, FL, USA, 2001; pp. 207–232. [Google Scholar]
- Dickinson, E. Emulsions. Annu. Rep. Sect. C Phys. Chem. 1986, 83, 31–58. [Google Scholar] [CrossRef]
- Fedyaeva, O.; Poshelyuzhnaya, E.; Trenikhin, M.; Zakharov, V.; Kuleshov, D.; Fisenko, T.; Lutayeva, I. Optical properties research of cadmium sulphide nanoparticles received by the interaction of the reverse emulsions based on sodium bis (2-ethilhexyl) sulfosuccinate. Procedia Eng. 2016, 152, 40–44. [Google Scholar] [CrossRef]
- Jha, P.K.; Mahto, V.; Saxena, V. Study the effects of xanthan gum and aluminium stearate on the properties of oil-in-water emulsion drilling fluids. Arab. J. Sci. Eng. 2016, 41, 143–153. [Google Scholar] [CrossRef]
- Lambert, J.H. Photometria Sive de Mensura et Gradibus Luminis, Colorum et Umbrae; Eberhardi Klett: Göttingen, Germany, 1760. [Google Scholar]
- Beer. Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Ann. Phys. 1852, 162, 78–88. [Google Scholar] [CrossRef]
- Pink, K.; Hein, S.; Foschum, F.; Kienle, A. Determination of the spectrally resolved extinction coefficient of human dental enamel using collimated transmission spectroscopy. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2022, 38, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Hariri, I.; Sadr, A.; Shimada, Y.; Tagami, J.; Sumi, Y. Effects of structural orientation of enamel and dentine on light attenuation and local refractive index: An optical coherence tomography study. J. Dent. 2012, 40, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Chernova, S.P.; Pravdin, A.B.; Tuchin, V.V. Polarized collimated transmittance of tissuelike phantom. In Proceedings of the Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, SPIE, San Jose, CA, USA, 8–14 February 1997; Volume 2981, pp. 230–234. [Google Scholar]
- Foschum, F.; Bergmann, F.; Kienle, A. Precise determination of the optical properties of turbid media using an optimized integrating sphere and advanced Monte Carlo simulations. Part 1: Theory. Appl. Opt. 2020, 59, 3203–3215. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, F.; Foschum, F.; Zuber, R.; Kienle, A. Precise determination of the optical properties of turbid media using an optimized integrating sphere and advanced Monte Carlo simulations. Part 2: Experiments. Appl. Opt. 2020, 59, 3216–3226. [Google Scholar] [CrossRef] [PubMed]
- Zomer, F. Transmission and reflection of Gaussian beams by anisotropic parallel plates. J. Opt. Soc. Am. A 2002, 20, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Thormählen, I.; Straub, J.; Grigull, U. Refractive Index of Water and Its Dependence on Wavelength, Temperature, and Density. J. Phys. Chem. Ref. Data 1985, 14, 933–945. [Google Scholar] [CrossRef]
- Smart, C.; Willis, E. Determination of refractive indices of polystyrene latices by light scattering. J. Colloid Interface Sci. 1967, 25, 577–583. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pink, K.; Kienle, A.; Foschum, F. Auto Aligning, Error-Compensated Broadband Collimated Transmission Spectroscopy. Sensors 2024, 24, 6993. https://doi.org/10.3390/s24216993
Pink K, Kienle A, Foschum F. Auto Aligning, Error-Compensated Broadband Collimated Transmission Spectroscopy. Sensors. 2024; 24(21):6993. https://doi.org/10.3390/s24216993
Chicago/Turabian StylePink, Karsten, Alwin Kienle, and Florian Foschum. 2024. "Auto Aligning, Error-Compensated Broadband Collimated Transmission Spectroscopy" Sensors 24, no. 21: 6993. https://doi.org/10.3390/s24216993
APA StylePink, K., Kienle, A., & Foschum, F. (2024). Auto Aligning, Error-Compensated Broadband Collimated Transmission Spectroscopy. Sensors, 24(21), 6993. https://doi.org/10.3390/s24216993