Forest Aboveground Biomass Estimation Based on Unmanned Aerial Vehicle–Light Detection and Ranging and Machine Learning
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Lidar Data Collection and Pre-Processing
2.3. Individual Tree Segmentation
2.4. Characteristic Variables and Importance Analysis
2.4.1. Individual Tree Parameters
2.4.2. Stand Parameters
2.4.3. Variable Importance Analysis
2.5. Prediction Models of AGB
2.5.1. Linear Regression Model
2.5.2. Support Vector Regression Model
2.5.3. K Nearest Neighbors Model
2.6. Assessment Model Accuracy
Leave-One-Out Cross-Validation
3. Results
3.1. AGB Estimation Based on Individual Tree Parameter
3.2. AGB Estimation Based on Stand Parameter
3.2.1. Variable Importance in Projection
3.2.2. Aboveground Biomass Inversion Based on Three Models
- (1)
- Multiple Linear Stepwise Regression Model
- (2)
- Support Vector Regression Model
- (3)
- KNN Regression Model
3.2.3. Comparison of the Results of Three Models for Inversion of AGB
4. Discussion
4.1. Forest AGB Estimation Based on LiDAR Individual Tree Parameters
4.2. Forest AGB Estimation Based on Stand Parameters
5. Conclusions
- (1)
- Estimation of forest AGB based on single tree parameters
- (2)
- Estimation of forest AGB based on stand parameters
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rockwood, D.L.; Rudie, A.W.; Ralph, S.A.; Zhu, J.Y.; Winandy, J.E. Energy product options for Eucalyptus species grown as short rotation woody crops. Int. J. Mol. Sci. 2008, 9, 1361–1378. [Google Scholar] [CrossRef] [PubMed]
- Hutapea, F.J.; Weston, C.J.; Mendham, D.; Volkova, L. Sustainable management of Eucalyptus pellita plantations: A review. For. Ecol. Manag. 2023, 537, 120941. [Google Scholar] [CrossRef]
- Hua, L.S.; Chen, L.W.; Antov, P.; Kristak, L.; Tahir, P.M. Engineering wood products from Eucalyptus spp. Adv. Mater. Sci. Eng. 2022, 2022, 8000780. [Google Scholar]
- Zhang, Y.X.; Wang, X.J. Geographical spatial distribution and productivity dynamic change of Eucalyptus plantations in China. Sci. Rep. 2021, 11, 19764. [Google Scholar] [CrossRef]
- Turnbull, J.W. Eucalypt plantations. New For. 1999, 17, 37–52. [Google Scholar] [CrossRef]
- Tomé, M.; Almeida, M.H.; Barreiro, S.; Branco, M.R.; Deus, E.; Pinto, G.; Silva, J.S.; Soares, P.; Soalleiro, R.R. Opportunities and challenges of Eucalyptus plantations in Europe: The Iberian Peninsula experience. Eur. J. For. Res. 2021, 140, 489–510. [Google Scholar] [CrossRef]
- Booth, T.H. Eucalypt plantations and climate change. For. Ecol. Manag. 2013, 301, 28–34. [Google Scholar] [CrossRef]
- Xu, D.; Wang, H.; Xu, W.; Luan, Z.; Xu, X. LiDAR applications to estimate forest biomass at individual tree scale: Opportunities, challenges and future perspectives. Forests 2021, 12, 550. [Google Scholar] [CrossRef]
- Xu, H.; He, B.; Guo, L.; Yan, X.; Zeng, Y.; Yuan, W.; Zhong, Z.; Tang, R.; Yang, Y.; Liu, H.; et al. Global forest plantations mapping and biomass carbon estimation. J. Geophys. Res.-Biogeosciences 2024, 129, e2023JG007441. [Google Scholar] [CrossRef]
- KC, Y.B.; Liu, Q.; Saud, P.; Gaire, D.; Adhikari, H. Estimation of above-ground Ffrest biomass in nepal by the use of airborne LiDAR, and forest inventory data. Land 2024, 13, 213. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Remote sensing of above-ground biomass. Remote Sens. 2017, 9, 935. [Google Scholar] [CrossRef]
- Du, L.; Pang, Y.; Wang, Q.; Huang, C.; Bai, Y.; Chen, D.; Lu, W. A LiDAR biomass index-based approach for tree-and plot-level biomass mapping over forest farms using 3D point clouds. Remote Sens. Environ. 2023, 290, 113543. [Google Scholar] [CrossRef]
- Salunkhe, O.; Khare, P.K.; Kumari, R.; Khan, M.L. A systematic review on the above-ground biomass and carbon stocks of Indian forest ecosystems. Ecol. Process. 2018, 7, 17. [Google Scholar] [CrossRef]
- Goldbergs, G.; Levick, S.R.; Lawes, M.; Edwards, A. Hierarchical integration of individual tree and area-based approaches for savanna biomass uncertainty estimation from airborne LiDAR. Remote Sens. Environ. 2018, 205, 141–150. [Google Scholar] [CrossRef]
- Demol, M.; Verbeeck, H.; Gielen, B.; Armston, J.; Burt, A.; Disney, M.; Duncanson, L.; Hackenberg, J.; Kükenbrink, D.; Lau, A. Estimating forest above-ground biomass with terrestrial laser scanning: Current status and future directions. Methods Ecol. Evol. 2022, 13, 1628–1639. [Google Scholar] [CrossRef]
- Cao, L.; Coops, N.C.; Sun, Y.; Ruan, H.; Wang, G.; Dai, J.; She, G. Estimating canopy structure and biomass in bamboo forests using airborne LiDAR data. ISPRS J. Photogramm. Remote Sens. 2019, 148, 114–129. [Google Scholar] [CrossRef]
- Laurin, G.V.; Chen, Q.; Lindsell, J.A.; Chen, Q.; Lindsell, J.A.; Coomes, D.A.; Frate, F.D.; Guerriero, L.; Pirotti, F.; Valentini, R. Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data. ISPRS J. Photogramm. Remote Sens. 2014, 89, 49–58. [Google Scholar] [CrossRef]
- Chen, G.; Hay, G.J. A support vector regression approach to estimate forest biophysical parameters at the object level using airborne LiDAR transects and quickbird data. Photogramm. Eng. Remote Sens. 2011, 77, 733–741. [Google Scholar] [CrossRef]
- Li, X.; Du, H.; Mao, F.; Zhou, G.; Chen, L.; Xing, L.; Fan, W.; Xu, X.; Liu, Y.; Cui, L.; et al. Estimating bamboo forest above-ground biomass using EnKF-assimilated MODIS LAI spatiotemporal data and machine learning algorithms. Agric. For. Meteorol. 2018, 256, 445–457. [Google Scholar] [CrossRef]
- Gao, L.; Chai, G.; Zhang, X. Above-ground biomass estimation of plantation with different tree species using airborne LiDAR and hyperspectral Data. Remote Sens. 2022, 14, 2568. [Google Scholar] [CrossRef]
- Liao, Z.; He, B.; Quan, X.; van Dijk, A.I.; Qiu, S.; Yin, C. Biomass estimation in dense tropical forest using multiple information from single-baseline P-band PolInSAR data. Remote sens. Environ. 2019, 221, 489–507. [Google Scholar] [CrossRef]
- Yu, Y.; Saatchi, S. Sensitivity of L-Band SAR backscatter to aboveground biomass of global forests. Remote Sens. 2016, 8, 522. [Google Scholar] [CrossRef]
- Poley, L.G.; McDermid, G.J. A Systematic review of the factors influencing the estimation of vegetation aboveground biomass using unmanned aerial systems. Remote Sens. 2020, 12, 1052. [Google Scholar] [CrossRef]
- Tian, L.; Wu, X.; Tao, Y.; Li, M.; Qian, C.; Liao, L.; Fu, W. Review of remote sensing-based methods for forest aboveground biomass estimation: Progress, challenges, and prospects. Forests 2023, 14, 1086. [Google Scholar] [CrossRef]
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114. [Google Scholar] [CrossRef]
- Dubayah, R.O.; Sheldon, S.L.; Clark, D.B.; Hofton, M.A.; Blair, J.B.; Hurtt, G.C.; Chazdon, R.L. Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica. J. Geophys. Res.-Biogeosciences 2010, 115, G00E09. [Google Scholar] [CrossRef]
- Wang, D.; Wan, B.; Qiu, P.; Zuo, Z.; Wang, R.; Wu, X. Mapping height and aboveground biomass of mangrove forests on Hainan Island using UAV-LiDAR sampling. Remote Sens. 2019, 11, 2156. [Google Scholar] [CrossRef]
- Yue, J.; Yang, H.; Yang, G.; Fu, Y.; Wang, H.; Zhou, C. Estimating vertically growing crop above-ground biomass based on UAV remote sensing. Comput. Electron. Agric. 2023, 205, 107627. [Google Scholar] [CrossRef]
- Zolkos, S.G.; Goetz, S.J.; Dubayah, R. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens. Environ. 2013, 128, 289–298. [Google Scholar] [CrossRef]
- Poudel, K.P.; Temesgen, H. Methods for estimating aboveground biomass and its components for Douglas-fir and lodgepole pine trees. Can. J. Forest Res. 2016, 46, 77–87. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, S.; Cao, S. Building and application of an estimation method for urban forest aboveground biomass based on UAV LiDAR and optical images. J. Nanjing Univ. Inform. Sci. Technol. 2024, 1–13. [Google Scholar] [CrossRef]
- Feyisa, T.S.; Soromessa, T.; Bekele, T.; Bereta, A.; Temesgen, F. Above ground biomass estimation methods and challenges: A. Measurement 2019, 9, 12–25. [Google Scholar]
- Liu, Y.; Lei, P.; You, Q.; Tang, X.; Lai, X.; Chen, J.; You, H. Individual tree aboveground biomass estimation based on UAV stereo images in a Eucalyptus plantation. Forests 2023, 14, 1748. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Z.; Huang, R.; You, H.; Han, X.; Yue, T.; Zhou, G. The effects of spatial resolution and resampling on the classification accuracy of wetland vegetation species and ground objects: A study based on high spatial resolution UAV images. Drones 2023, 7, 61. [Google Scholar] [CrossRef]
- Zhu, Y.; Jeon, S.; Sung, H.; Kim, Y.; Park, C.; Cha, S.; Jo, H.W.; Lee, W.K. Developing UAV-based forest spatial information and evaluation technology for efficient forest management. Sustainability 2020, 12, 10150. [Google Scholar] [CrossRef]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef]
- Hu, Y.; Nie, Y.; Liu, Z.; Wu, G.; Fan, W. Improving the potential of coniferous forest aboveground biomass estimation by integrating C-and L-Band SAR Data with Feature Selection and Non-Parametric Model. Remote Sens. 2023, 15, 4194. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, D.; Li, G.; Wang, G.; Chen, Q.; Liu, L.; Li, D. Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region. Remote Sens. 2018, 10, 627. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Næsset, E.; Gobakken, T. Optimizing the k-Nearest Neighbors technique for estimating forest aboveground biomass using airborne laser scanning data. Remote Sens. Environ. 2015, 163, 13–22. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Q.; Pang, Y. Review on forest parameters inversion using LiDAR. J. Remote Sens. 2016, 20, 1138–1150. [Google Scholar]
- Martens, H.; Næs, T. Multivariate Calibration; John Wiley & Sons: Hoboken, NJ, USA, 1992. [Google Scholar]
- Mehmood, T.; Sæbø, S.; Liland, K.H. Comparison of variable selection methods in partial least squares regression. J. Chemom. 2020, 34, e3226. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, X. Above-ground biomass estimation of plantation with complex forest stand structure using multiple features from airborne laser scanning point cloud data. Forests 2021, 12, 1713. [Google Scholar] [CrossRef]
- Kronseder, K.; Ballhorn, U.; Böhm, V.; Siegert, F. Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data. Int. J. Appl. Earth Obs. 2012, 18, 37–48. [Google Scholar] [CrossRef]
- Gleason, C.J.; Im, J. Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens. Environ. 2012, 125, 80–91. [Google Scholar] [CrossRef]
- Hao, Q.; Huang, C. A review of forest aboveground biomass estimation based on remote sensing data. Chin. J. Plant Ecol. 2023, 47, 1356–1374. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.; Zeng, W.; Song, J. Comparison and evaluation of three methods for estimating forest above ground biomass using TM and GLAS data. Remote Sens. 2017, 9, 341. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, Q.; Su, Y.; Xue, B. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas. ISPRS J. Photogramm. 2016, 117, 79–91. [Google Scholar] [CrossRef]
- Stereńczak, K.; Ciesielski, M.; Balazy, R.; Zawiła-Niedźwiecki, T. Comparison of various algorithms for DTM interpolation from LIDAR data in dense mountain forests. Eur. J. Remote Sens. 2016, 49, 599–621. [Google Scholar] [CrossRef]
- Popescu, S.C.; Wynne, R.H. Seeing the trees in the forest. Photogramm. Eng. Remote Sens. 2004, 70, 589–604. [Google Scholar] [CrossRef]
- Morsdorf, F.; Meier, E.; Kötz, B.; Itten, K.I.; Dobbertin, M.; Allgöwer, B. LiDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sens. Environ. 2004, 92, 353–362. [Google Scholar] [CrossRef]
- Lin, J.; Yu, Y.; Fan, W. Estimation of Leaf Area IndexbyMerging UAV LiDAR with TLS LiDAR Data. J. Northeast For. Univ. 2022, 50, 51–59. [Google Scholar]
- Luo, J.; Tian, Y.; Zhang, Q.; Tao, J.; Huang, Y.; Wang, J.; Zhang, Y.; Huang, Z.; Deng, J.; Tan, Y. Estimation of aboveground biomass of mangrove forest using UAV-LiDAR. Haiyang Xuebao 2023, 45, 108–119. [Google Scholar]
- Wold, S. PLS for multivariate linear modeling. In Chemometric Methods in Molecular Design; Waterbeemd, H., Ed.; Wiley-VCH: Weinheim, Germany, 1995; pp. 195–218. [Google Scholar]
- Zou, K.H.; Tuncali, K.; Silverman, S.G. Correlation and simple linear regression. Radiology 2003, 227, 617–628. [Google Scholar] [CrossRef]
- Zhang, F.; O’Donnell, L.J. Support vector regression. In Machine Learning; Mechelli, A., Vieira, S., Eds.; Academic Press: New York, NY, USA, 2020; pp. 123–140. [Google Scholar]
- Han, L.; Yang, G.; Dai, H.; Xu, B.; Yang, H.; Feng, H.; Li, Z.; Yang, X. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods 2019, 15, 10. [Google Scholar] [CrossRef]
- Nilsson, M.; Nordkvist, K.; Jonzén, J.; Lindgren, N.; Axensten, P.; Wallerman, J.; Egberth, M.; Larsson, S.; Nilsson, L.; Eriksson, J.; et al. A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory. Remote Sens. Environ. 2017, 194, 447–454. [Google Scholar] [CrossRef]
- Salum, R.B.; Souza-Filho, P.W.M.; Simard, M.; Simard, M.; Silva, C.A.; Fernandes, M.E.B.; Cougo, M.F.; Junior, W.N.; Rogers, K. Improving mangrove above-ground biomass estimates using LiDAR. Estuar. Coast. Shelf Sci. 2020, 236, 106585. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Harding, D.J.; Keller, M.; Cohen, W.B.; Carabajal, C.C.; Del Bom Espirito-Santo, F.; Hunter, M.O.; de Oliveira, R., Jr. Estimates of forest canopy height and aboveground biomass using ICESat. Geophys. Res. Lett. 2005, 32, L22S02. [Google Scholar] [CrossRef]
- Baghdadi, N.; Le Maire, G.; Fayad, I.; Bailly, J.S.; Nouvellon, Y.; Lemos, C.; Hakamada, R. Testing different methods of forest height and aboveground biomass estimations from ICESat/GLAS data in Eucalyptus plantations in Brazil. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 290–299. [Google Scholar] [CrossRef]
- Fayad, I.; Baghdadi, N.; Bailly, J.-S.; Barbier, N.; Gond, V.; Hajj, M.E.; Fabre, F.; Bourgine, B. Canopy height estimation in French Guiana with LiDAR ICESat/GLAS data using principal component analysis and random forest regressions. Remote Sens. 2014, 6, 11883–11914. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Li, W.; Liang, S. A Proposed ensemble feature selection method for estimating forest aboveground biomass from multiple satellite data. Remote Sens. 2023, 15, 1096. [Google Scholar] [CrossRef]
- Yu, H.; Wu, Y.; Niu, L.; Chai, Y.; Feng, Q.; Wang, W.; Liang, T. A method to avoid spatial overfitting in estimation of grassland above-ground biomass on the Tibetan Plateau. Ecol. Indic. 2021, 125, 107450. [Google Scholar] [CrossRef]
- Rex, F.E.; Silva, C.A.; Dalla Corte, A.P.; Klauberg, C.; Mohan, M.; Cardil, A.; Silva, V.S.d.; Almeida, D.R.A.d.; Garcia, M.; Broadbent, E.N.; et al. Comparison of statistical modelling approaches for estimating tropical forest aboveground biomass stock and reporting their changes in low-intensity logging areas using multi-temporal LiDAR data. Remote Sens. 2020, 12, 1498. [Google Scholar] [CrossRef]
- He, Q.; Chen, E.; An, R.; Li, Y. Above-ground biomass and biomass components estimation using LiDAR data in a coniferous forest. Forests 2013, 4, 984–1002. [Google Scholar] [CrossRef]
- Lu, J.; Wang, H.; Qin, S.; Cao, L.; Pu, R.; Li, G.; Sun, J. Estimation of aboveground biomass of Robinia pseudoacacia forest in the Yellow River Delta based on UAV and Backpack LiDAR point clouds. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102014. [Google Scholar] [CrossRef]
- Du, Z.; Chen, Z.; Ma, K.; Liu, Z.; Gu, X. Estimating standing volume in southern collective forest region based on the unmanned aerial vehicle LiDAR characteristic variables. For. Grassl. Resour. Res. 2021, 4, 157–165. [Google Scholar]
- Sharifi, A.; Amini, J.; Tateishi, R. Estimation of forest biomass using multivariate relevance vector regression. Photogramm. Engin. Remote Sens. 2016, 82, 41–49. [Google Scholar] [CrossRef]
- Englhart, S.; Keuck, V.; Siegert, F. Modeling aboveground biomass in tropical forests using multi-frequency SAR data—A comparison of methods. IEEE Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 5, 298–306. [Google Scholar] [CrossRef]
- Tang, J.; Liu, Y.; Li, L.; Liu, Y.; Wu, Y.; Xu, H.; Ou, G. Enhancing Aboveground Biomass Estimation for Three Pinus Forests in Yunnan, SW China, Using Landsat 8. Remote Sens. 2022, 14, 4589. [Google Scholar] [CrossRef]
- Chen, H.; Qin, Z.; Zhai, D.-L.; Ou, G.; Li, X.; Zhao, G.; Fan, J.; Zhao, C.; Xu, H. Mapping forest aboveground biomass with MODIS and Fengyun-3C VIRR imageries in Yunnan Province, Southwest China using linear regression, k-nearest neighbor and random forest. Remote Sens. 2022, 14, 5456. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, G.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Li, Y.; Wang, R.; Shi, W.; Yu, Q.; Li, X.; Chen, X. Research on Accurate Estimation Method of Eucalyptus Biomass Based on Airborne LiDAR Data and Aerial Images. Sustainability 2022, 14, 10576. [Google Scholar] [CrossRef]
- Monnet, J.M.; Chanussot, J.; Berger, F. Support vector regression for the estimation of forest stand parameters using airborne laser scanning. IEEE Geosci. Remote Sens. 2011, 8, 580–584. [Google Scholar] [CrossRef]
Variables | Plot 1–10 | Plot 11–22 | ||||||
---|---|---|---|---|---|---|---|---|
Minimum | Maximum | Mean Value | Standard Deviation | Minimum | Maximum | Mean Value | Standard Deviation | |
DBH (cm) | 2.50 | 15.80 | 7.76 | 2.81 | 3.05 | 15.9 | 8.56 | 3.05 |
Tree height (m) | 3.57 | 18.00 | 10.17 | 3.01 | 5.05 | 19.46 | 11.82 | 3.48 |
Crown (m) | 1.20 | 3.80 | 2.10 | 0.46 | 1.08 | 3.76 | 2.05 | 0.44 |
Metrics | Description |
---|---|
CC (%) | Canopy cover |
GF | Gap fraction |
LAI (m2) [54] | Leaf Area Index |
H_kurt | Kurtosis of canopy height |
H_max (m) | Maximum height |
H_min (m) | Minimum height |
H_mean (m) | Mean height |
H_skew | Skewness of canopy height |
H_std, stddev | Standard deviation |
H_var, variance | Variance |
H1, H5, H10, H20, H25, H30, H40, H50, H60, H70, H75, H80, H90, H95, H99 (m) | p-th percentile of canopy height |
d0, d1, d2, d3, d4, d5, d6, d7, d8, d9 (m2) | Canopy density variable |
Functions | Expression | Parameters |
---|---|---|
Linear kernel function | denotes the inner product of the feature point data | |
Polynomial kernel function | d denotes the number of polynomials, d ≥ 0 | |
Gaussian kernel function | σ denotes the bandwidth of the Gaussian kernel (width), σ > 0 | |
Sigmoid kernel function | tanh denotes the hyperbolic tangent function, β > 0, θ < 0 |
Number | Regression Equations | R | Adjusted R2 | R2 | RMSE | RRMSE |
---|---|---|---|---|---|---|
1 | AGB = 5.201 × AvgHA − 22.213 | 0.804 | 0.795 | 0.77 | 10.425 | 0.3043 |
2 | ln (AGB) = 1.99 × ln AvgHA − 1.341 | 0.873 | 0.867 | 0.851 | 0.312 | 0.0091 |
3 | AGB = 5.24 × LorCHA − 24.112 | 0.809 | 0.80 | 0.775 | 10.298 | 0.3006 |
4 | ln (AGB) = 2.064 × lnLorCHA − 1.581 | 0.861 | 0.855 | 0.837 | 0.327 | 0.0095 |
5 | AGB = 4.867 × AvgHA − 6.071*CE − 35.559 | 0.809 | 0.80 | 0.741 | 11.076 | 0.3233 |
6 | ln (AGB) = 2.115 × ln AvgHA − 0.8 × ln CE − 0.82 | 0.882 | 0.87 | 0.845 | 0.318 | 0.0092 |
Model | R | Adjusted R2 | R2 | RMSE | RRMSE |
---|---|---|---|---|---|
MLSR 1 | 0.816 a | 0.807 | 0.770 | 9.746 | 0.284 |
MLSR 2 | 0.865 b | 0.852 | 0.822 | 8.547 | 0.249 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Lei, J.; Huang, Y. Forest Aboveground Biomass Estimation Based on Unmanned Aerial Vehicle–Light Detection and Ranging and Machine Learning. Sensors 2024, 24, 7071. https://doi.org/10.3390/s24217071
Yan Y, Lei J, Huang Y. Forest Aboveground Biomass Estimation Based on Unmanned Aerial Vehicle–Light Detection and Ranging and Machine Learning. Sensors. 2024; 24(21):7071. https://doi.org/10.3390/s24217071
Chicago/Turabian StyleYan, Yan, Jingjing Lei, and Yuqing Huang. 2024. "Forest Aboveground Biomass Estimation Based on Unmanned Aerial Vehicle–Light Detection and Ranging and Machine Learning" Sensors 24, no. 21: 7071. https://doi.org/10.3390/s24217071
APA StyleYan, Y., Lei, J., & Huang, Y. (2024). Forest Aboveground Biomass Estimation Based on Unmanned Aerial Vehicle–Light Detection and Ranging and Machine Learning. Sensors, 24(21), 7071. https://doi.org/10.3390/s24217071