Vertically Aligned Nanocrystalline Graphite Nanowalls for Flexible Electrodes as Electrochemical Sensors for Anthracene Detection
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Carbonic Material Growth Process and Transfer Process onto PE Substrate
2.3. Material Characterization and Electrochemical Investigation
3. Results and Discussion
3.1. Morphological and Structural Characterization of the GNW Films
3.2. Electrochemical Characterization of the Carbonic Films
3.3. Electrochemical Determination of Anthracene on GNW-Based Flexible Electrodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Shahawi, M.S.; Hamza, A.; Bashammakh, A.S.; Al-Saggaf, W.T. An Overview on the Accumulation, Distribution, Transformations, Toxicity and Analytical Methods for the Monitoring of Persistent Organic Pollutants. Talanta 2010, 80, 1587–1597. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.; Jørgensen, H.E.; Larsen, J.C.; Poulsen, M. City Air Pollution of Polycyclic Aromatic Hydrocarbons and Other Mutagens: Occurrence, Sources and Health Effects. Sci. Total Environ. 1996, 189–190, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Fetzer, J.C. The chemistry and analysis of large PAHs. Polycycl. Aromat. Compd. 2007, 27, 143–162. [Google Scholar] [CrossRef]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. 2000. Available online: http://data.europa.eu/eli/dir/2000/60/2014-11-20 (accessed on 4 December 2023).
- Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. Available online: http://data.europa.eu/eli/dir/2013/39/oj (accessed on 4 December 2023).
- Comnea-Stancu, I.R.; van Staden, J.F.; Stefan-van Staden, R.-I. Review—Trends in Recent Developments in Electrochemical Sensors for the Determination of Polycyclic Aromatic Hydrocarbons from Water Resources and Catchment Areas. J. Electrochem. Soc. 2021, 168, 047504. [Google Scholar] [CrossRef]
- Liu, S.; Wei, M.; Zheng, X.; Xu, S.; Xia, F.; Zhou, C. Alizarin Red S Functionalized Mesoporous Silica Modified Glassy Carbon Electrode for Electrochemical Determination of Anthracene. Electrochim. Acta 2015, 160, 108–113. [Google Scholar] [CrossRef]
- Latif-Ur-Rahman; Shah, A.; Han, C.; Jan, A.K. Monitoring of Anthracene Using Nanoscale Au-Cu Bimetallic Alloy Nanoparticles Synthesized with Various Compositions. ACS Omega 2020, 5, 22494–22501. [Google Scholar] [CrossRef]
- Simionescu, O.-G.; Romanitan, C.; Albu, C.; Pachiu, C.; Vasile, E.; Djourelov, N.; Tutunaru, O.; Stoian, M.C.; Kusko, M.; Radoi, A. Properties of Nitrogen-Doped Nano-Crystalline Graphite Thin Films and Their Application as Electrochemical Sensors. J. Electrochem. Soc. 2020, 167, 126510. [Google Scholar] [CrossRef]
- Stoian, M.C.; Romanitan, C.; Simionescu, O.G.; Djourelov, N.; Brincoveanu, O.; Dinescu, A.; Radoi, A. Growth of Nanocrystalline Graphite and Vertically Aligned Graphite Nanowalls Thin Films and Their Transfer on Flexible Substrates for Applications as Electrochemical Sensors for Anthracene Detection. Microchem. J. 2024, 207, 111828. [Google Scholar] [CrossRef]
- Colmsjö, A. Concentration and Extraction of PAHs from Environmental Samples. In PAHs and Related Compounds: Chemistry; Neilson, A.H., Ed.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 55–76. ISBN 978-3-540-49697-7. [Google Scholar]
- Andrade Eiroa, A. Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in a Complex Mixture by Second-Derivative Constant-Energy Synchronous Spectrofluorimetry. Talanta 2000, 51, 677–684. [Google Scholar] [CrossRef]
- Zainal, P.N.S.; Ahmad, S.A.A.; Ngee, L.H. Surface Modification of Screen-Printed Carbon Electrode (SPCE) with Calixarene-Functionalized Electrochemically Reduced Graphene Oxide (ERGO/C4) in the Electrochemical Detection of Anthracene. J. Electrochem. Soc. 2019, 166, B110–B116. [Google Scholar] [CrossRef]
- Makelane, H.; John, S.V.; Yonkeu, A.L.D.; Waryo, T.; Tovide, O.; Iwuoha, E. Phase Selective Alternating Current Voltammetric Signalling Protocol: Application in Dendritic Co-polymer Sensor for Anthracene. Electroanalysis 2017, 29, 1887–1893. [Google Scholar] [CrossRef]
- Baig, N.; Sajid, M.; Saleh, T.A. Recent Trends in Nanomaterial-Modified Electrodes for Electroanalytical Applications. TrAC Trends Anal. Chem. 2019, 111, 47–61. [Google Scholar] [CrossRef]
- Zhao, G.; Li, X.; Huang, M.; Zhen, Z.; Zhong, Y.; Chen, Q.; Zhao, X.; He, Y.; Hu, R.; Yang, T.; et al. The Physics and Chemistry of Graphene-on-Surfaces. Chem. Soc. Rev. 2017, 46, 4417–4449. [Google Scholar] [CrossRef] [PubMed]
- Albu, C.; Eremia, S.A.V.; Veca, M.L.; Avram, A.; Popa, R.C.; Pachiu, C.; Romanitan, C.; Kusko, M.; Gavrila, R.; Radoi, A. Nano-Crystalline Graphite Film on SiO2: Electrochemistry and Electro-Analytical Application. Electrochim. Acta 2019, 303, 284–292. [Google Scholar] [CrossRef]
- Chen, Z.; Cheng, S.; Zhang, H.; Yi, Z.; Tang, B.; Chen, J.; Zhang, J.; Tang, C. Ultra Wideband Absorption Absorber Based on Dirac Semimetallic and Graphene Metamaterials. Phys. Lett. A 2024, 517, 129675. [Google Scholar] [CrossRef]
- Yan, S.; Zuo, Y.; Xiao, S.; Oxenløwe, L.K.; Ding, Y. Graphene Photodetector Employing Double Slot Structure with Enhanced Responsivity and Large Bandwidth. Opto-Electron. Adv. 2022, 5, 210159. [Google Scholar] [CrossRef]
- Jiang, B.; Hou, Y.; Wu, J.; Ma, Y.; Gan, X.; Zhao, J. In-Fiber Photoelectric Device Based on Graphene-Coated Tilted Fiber Grating. Opto-Electron. Sci. 2023, 2, 230012. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhang, L.; Du, T.; Ren, B.; Xu, Y.; Wang, S.; Miao, J.; Liu, Z. A Review of Carbon Materials for Supercapacitors. Mater. Des. 2022, 221, 111017. [Google Scholar] [CrossRef]
- Bratosin, I.N.; Romanitan, C.; Craciun, G.; Djourelov, N.; Kusko, M.; Stoian, M.C.; Radoi, A. Graphitized Porous Silicon Decorated with Cobalt Hexacyanoferrate Nanocubes as Hybrid Electrode for High-Performance Supercapacitors. Electrochim. Acta 2022, 424, 140632. [Google Scholar] [CrossRef]
- Maciel, C.C.; de Lima, L.F.; Ferreira, A.L.; de Araujo, W.R.; Ferreira, M. Development of a Flexible and Disposable Electrochemical Sensor Based on Poly (Butylene Adipate-Co-Terephthalate) and Graphite for Hydroquinone Sensing. Sens. Actuators Rep. 2022, 4, 100091. [Google Scholar] [CrossRef]
- Chakraborty, M.; Kettle, J.; Dahiya, R. Electronic Waste Reduction Through Devices and Printed Circuit Boards Designed for Circularity. IEEE J. Flex. Electron. 2022, 1, 4–23. [Google Scholar] [CrossRef]
- Yoshihara, N.; Noda, M. Chemical Etching of Copper Foils for Single-Layer Graphene Growth by Chemical Vapor Deposition. Chem. Phys. Lett. 2017, 685, 40–46. [Google Scholar] [CrossRef]
- Kant, T.; Shrivas, K.; Dewangan, K.; Kumar, A.; Jaiswal, N.K.; Deb, M.K.; Pervez, S. Design and Development of Conductive Nanomaterials for Electrochemical Sensors: A Modern Approach. Mater. Today Chem. 2022, 24, 100769. [Google Scholar] [CrossRef]
- Camargo, J.R.; Orzari, L.O.; Araújo, D.A.G.; de Oliveira, P.R.; Kalinke, C.; Rocha, D.P.; Luiz dos Santos, A.; Takeuchi, R.M.; Munoz, R.A.A.; Bonacin, J.A.; et al. Development of Conductive Inks for Electrochemical Sensors and Biosensors. Microchem. J. 2021, 164, 105998. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Singh, H.; Chakravarty, S.; ManojKumar, P.A.; Sen, S.; Amirthapandian, S.; Govindaraj, R.; Khadiev, A. Investigating the Mechanism of Time Dependent Evolution of Vertical Graphene Nanowalls. Appl. Surf. Sci. 2025, 681, 161588. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Khawal, H.A.; Gawai, U.P.; Asokan, K.; Dole, B.N. Modified Structural, Surface Morphological and Optical Studies of Li3+ Swift Heavy Ion Irradiation on Zinc Oxide Nanoparticles. RSC Adv. 2016, 6, 49068–49075. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Cançado, L.G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y.A.; Mizusaki, H.; Jorio, A.; Coelho, L.N.; Magalhães-Paniago, R.; Pimenta, M.A. General Equation for the Determination of the Crystallite Size La of Nanographite by Raman Spectroscopy. Appl. Phys. Lett. 2006, 88, 163106. [Google Scholar] [CrossRef]
- Trachioti, M.G.; Lazanas, A.C.; Prodromidis, M.I. Shedding Light on the Calculation of Electrode Electroactive Area and Heterogeneous Electron Transfer Rate Constants at Graphite Screen-Printed Electrodes. Microchim. Acta 2023, 190, 251. [Google Scholar] [CrossRef]
- Nicholson, R.S. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Anal. Chem. 1965, 37, 1351–1355. [Google Scholar] [CrossRef]
- Paddon, C.A.; Banks, C.E.; Davies, I.G.; Compton, R.G. Oxidation of Anthracene on Platinum Macro- and Micro-Electrodes: Sonoelectrochemical, Cryoelectrochemical and Sonocryoelectrochemical Studies. Ultrason. Sonochem. 2006, 13, 126–132. [Google Scholar] [CrossRef]
- Mathieu-Scheers, E.; Bouden, S.; Grillot, C.; Nicolle, J.; Warmont, F.; Bertagna, V.; Cagnon, B.; Vautrin-Ul, C. Trace Anthracene Electrochemical Detection Based on Electropolymerized-Molecularly Imprinted Polypyrrole Modified Glassy Carbon Electrode. J. Electroanal. Chem. 2019, 848, 113253. [Google Scholar] [CrossRef]
- Hamnca, S.; Ward, M.; Ngema, X.T.; Iwuoha, E.I.; Baker, P.G.L. Development of Graphenated Polyamic Acid Sensors for Electroanalytical Detection of Anthracene. J. Nano Res. 2016, 43, 11–22. [Google Scholar] [CrossRef]
- Mailu, S.N.; Waryo, T.T.; Ndangili, P.M.; Ngece, F.R.; Baleg, A.A.; Baker, P.G.; Iwuoha, E.I. Determination of Anthracene on Ag-Au Alloy Nanoparticles/Overoxidized-Polypyrrole Composite Modified Glassy Carbon Electrodes. Sensors 2010, 10, 9449–9465. [Google Scholar] [CrossRef]
- Tovide, O.; Jahed, N.; Sunday, C.E.; Pokpas, K.; Ajayi, R.F.; Makelane, H.R.; Molapo, K.M.; John, S.V.; Baker, P.G.; Iwuoha, E.I. Electro-Oxidation of Anthracene on Polyanilino-Graphene Composite Electrode. Sens. Actuators B Chem. 2014, 205, 184–192. [Google Scholar] [CrossRef]
- Rassie, C.; Olowu, R.A.; Waryo, T.T.; Wilson, L.; Williams, A.; Baker, P.G.; Iwuoha, E.I. Dendritic 7T-Polythiophene Electro-Catalytic Sensor System for the Determination of Polycyclic Aromatic Hydrocarbons. Int. J. Electrochem. Sci. 2011, 6, 1949–1967. [Google Scholar] [CrossRef]
- Mwazighe, F.M. Multi-Walled Carbon Nanotubes-Modified Glassy Carbon Electrode for the Detection of Anthracene. Int. J. Electrochem. Sci. 2020, 15, 11058–11069. [Google Scholar] [CrossRef]
- Adesanya, F.A.; Fayemi, O.E. Anthracene Electrochemical Sensor at FMWCNTs/ZnO Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2023, 18, 100382. [Google Scholar] [CrossRef]
Samples | ANTR Spiked (μM) | ANTR Found (μM) | Recovery (%) |
---|---|---|---|
Tap water | 100 | 102.6 | 96.4 |
200 | 196.4 | 93.6 | |
300 | 286.2 | 92.8 | |
350 | 337.8 | 89.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoian, M.C.; Simionescu, O.G.; Romanitan, C.; Craciun, G.; Pachiu, C.; Radoi, A. Vertically Aligned Nanocrystalline Graphite Nanowalls for Flexible Electrodes as Electrochemical Sensors for Anthracene Detection. Sensors 2024, 24, 7194. https://doi.org/10.3390/s24227194
Stoian MC, Simionescu OG, Romanitan C, Craciun G, Pachiu C, Radoi A. Vertically Aligned Nanocrystalline Graphite Nanowalls for Flexible Electrodes as Electrochemical Sensors for Anthracene Detection. Sensors. 2024; 24(22):7194. https://doi.org/10.3390/s24227194
Chicago/Turabian StyleStoian, Marius C., Octavian G. Simionescu, Cosmin Romanitan, Gabriel Craciun, Cristina Pachiu, and Antonio Radoi. 2024. "Vertically Aligned Nanocrystalline Graphite Nanowalls for Flexible Electrodes as Electrochemical Sensors for Anthracene Detection" Sensors 24, no. 22: 7194. https://doi.org/10.3390/s24227194
APA StyleStoian, M. C., Simionescu, O. G., Romanitan, C., Craciun, G., Pachiu, C., & Radoi, A. (2024). Vertically Aligned Nanocrystalline Graphite Nanowalls for Flexible Electrodes as Electrochemical Sensors for Anthracene Detection. Sensors, 24(22), 7194. https://doi.org/10.3390/s24227194