Monitoring of Non-Lame Horses and Horses with Unilateral Hindlimb Lameness at Rest with the Aid of Accelerometers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Animals and Experimental Design
2.3. Accelerometers
2.4. Data Handling
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The American Association of Equine Practitioners’ Lameness Grading System
Appendix B. Data Sheet of Mini Data Logger MSR145/Accelerometers
Appendix C. Angle Calculation as a Second Method
Appendix D. Percentage Distribution of Non-Lame and Left or Right Hindlimb Lame Horses Resting Their Hindlimbs
Horse Number | LH | RH |
---|---|---|
3 | 36 | 64 |
7 | 41 | 59 |
14 | 59 | 41 |
18 | 55 | 45 |
19 | 37 | 63 |
20 | 40 | 60 |
25 | 63 | 37 |
26 | 66 | 34 |
27 | 52 | 48 |
29 | 53 | 47 |
Mean | 50 | 50 |
SD | 11 | 11 |
Horse Number | LH | RH |
---|---|---|
5 | 58 | 42 |
6 | 16 | 84 |
8 | 57 | 43 |
9 | 40 | 60 |
12 | 94 | 6 |
13 | 100 | 0 |
15 | 29 | 71 |
17 | 100 | 0 |
Mean | 62 | 38 |
SD | 33 | 33 |
Horse Number | LH | RH |
---|---|---|
1 | 14 | 86 |
2 | 34 | 66 |
4 | 46 | 54 |
10 | 28 | 72 |
11 | 37 | 63 |
16 | 53 | 47 |
21 | 53 | 47 |
22 | 21 | 79 |
23 | 34 | 66 |
24 | 27 | 73 |
28 | 16 | 84 |
30 | 7 | 93 |
Mean | 31 | 69 |
SD | 15 | 15 |
References
- Keegan, K.G.; Dent, E.V.; Wilson, D.A.; Janicek, J.; Kramer, J.; LaCarrubba, A.; Walsh, D.M.; Cassells, M.W.; Esther, T.M.; Schiltz, P.; et al. Repeatability of subjective evaluation of lameness in horses. Equine Vet. J. 2010, 42, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Pfau, T.; Witte, T.H.; Wilson, A.M. A method for deriving displacement data during cyclical movement using an inertial sensor. J. Exp. Biol. 2005, 208, 2503–2514. [Google Scholar] [CrossRef] [PubMed]
- Hewetson, M.; Christley, R.M.; Hunt, I.D.; Voute, L.C. Investigations of the reliability of observational gait analysis for the assessment of lameness in horses. Vet Rec. 2006, 158, 852–857. [Google Scholar] [CrossRef] [PubMed]
- McCracken, M.J.; Kramer, J.; Keegan, K.G.; Lopes, M.; Wilson, D.A.; Reed, S.K.; LaCarrubba, A.; Rasch, M. Comparison of an inertial sensor system of lameness quantification with subjective lameness evaluation. Equine Vet. J. 2012, 44, 652–656. [Google Scholar] [CrossRef]
- Keegan, K.G.; Yonezawa, Y.; Pai, P.F.; Wilson, D.A.; Kramer, J. Evaluation of a sensor-based system of motion analysis for detection and quantification of forelimb and hind limb lameness in horses. Am. J. Vet. Res. 2004, 65, 665–670. [Google Scholar] [CrossRef]
- Keegan, K.G. Reliability of equine visual lameness classification. Vet. Rec. 2019, 184, 60–62. [Google Scholar] [CrossRef]
- Parente, E.J.; Russau, A.L.; Birks, E.K. Effects of mild forelimb lameness on exercise performance. Equine Vet. J. Suppl. 2002, 34, 252–256. [Google Scholar] [CrossRef]
- Uellendahl, A. Verhaltensüberwachung in Ruhe bei Lahmen Pferden im Vergleich zu Gesunden Pferden mit Hilfe von Messungen des Rohrbeinwinkels Durch den Mini-Datenlogger MSR145 und Videoüberwachung. Available online: https://www.vetmeduni.ac.at/hochschulschriften/diplomarbeiten/AC15604758.pdf (accessed on 22 August 2024).
- Torcivia, C.; McDonnell, S. Equine Discomfort Ethogram. Animals 2021, 11, 580. [Google Scholar] [CrossRef]
- Weishaupt, M.A.; Wiestner, T.; Hogg, H.P.; Jordan, P.; Auer, J.A. Compensatory load redistribution of horses with induced weight-bearing forelimb lameness trotting on a treadmill. Vet. J. 2006, 171, 135–146. [Google Scholar] [CrossRef]
- Blackie, N.; Bleach, E.; Amory, J.; Scaife, J. Impact of lameness on gait characteristics and lying behaviour of zero grazed dairy cattle in early lactation. Appl. Anim. Behav. Sci. 2011, 129, 67–73. [Google Scholar] [CrossRef]
- Brouwers, S.P.; Simmler, M.; Savary, P.; Scriba, M.F. Towards a novel method for detecting atypical lying down and standing up behaviors in dairy cows using accelerometers and machine learning. Smart Agric. Technol. 2023, 4, 100199. [Google Scholar] [CrossRef]
- Weigele, H.C.; Gygax, L.; Steiner, A.; Wechsler, B.; Burla, J.-B. Moderate lameness leads to marked behavioral changes in dairy cows. J. Dairy Sci. 2018, 101, 2370–2382. [Google Scholar] [CrossRef] [PubMed]
- Clothier, J.; Small, A.; Hinch, G.; Barwick, J.; Brown, W.Y. Using Movement Sensors to Assess Lying Time in Horses With and Without Angular Limb Deformities. J. Equine Vet. Sci. 2019, 75, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Traulsen, I.; Breitenberger, S.; Auer, W.; Stamer, E.; Müller, K.; Krieter, J. Automatic detection of lameness in gestating group-housed sows using positioning and acceleration measurements. Animal 2016, 10, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Baxter, G.M. Microsoft Word—Adams and Stashak’s Lameness in Horses, 6th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2011. [Google Scholar]
- Davidson, E.J. Lameness Evaluation of the Athletic Horse. Vet. Clin. N. Am. Equine Pract. 2018, 34, 181–191. [Google Scholar] [CrossRef]
- Byström, A.; Clayton, H.M.; Hernlund, E.; Rhodin, M.; Egenvall, A. Equestrian and biomechanical perspectives on laterality in the horse. Comp. Exerc. Physiol. 2020, 16, 35–45. [Google Scholar] [CrossRef]
- Rogers, L.J.; Andrew, R. Comparative Vertebrate Lateralization; Cambridge University Press: Cambridge, UK, 2002; ISBN 9781139437479. [Google Scholar]
- Rogers, L.J. Hand and paw preferences in relation to the lateralized brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 943–954. [Google Scholar] [CrossRef]
- van Heel, M.C.V.; Kroekenstoel, A.M.; van Dierendonck, M.C.; van Weeren, P.R.; Back, W. Uneven feet in a foal may develop as a consequence of lateral grazing behaviour induced by conformational traits. Equine Vet. J. 2006, 38, 646–651. [Google Scholar] [CrossRef]
- van Heel, M.C.V.; van Dierendonck, M.C.; Kroekenstoel, A.M.; Back, W. Lateralised motor behaviour leads to increased unevenness in front feet and asymmetry in athletic performance in young mature Warmblood horses. Equine Vet. J. 2010, 42, 444–450. [Google Scholar] [CrossRef]
- Rogers, L.J. Relevance of brain and behavioural lateralization to animal welfare. Appl. Anim. Behav. Sci. 2010, 127, 1–11. [Google Scholar] [CrossRef]
- McGreevy, P.D.; Rogers, L.J. Motor and sensory laterality in thoroughbred horses. Appl. Anim. Behav. Sci. 2005, 92, 337–352. [Google Scholar] [CrossRef]
- Krueger, K.; Schwarz, S.; Marr, I.; Farmer, K. Laterality in Horse Training: Psychological and Physical Balance and Coordination and Strength Rather than Straightness. Animals 2022, 12, 1042. [Google Scholar] [CrossRef] [PubMed]
- Sepulveda Caviedes, M.F.; Forbes, B.S.; Pfau, T. Repeatability of gait analysis measurements in Thoroughbreds in training. Equine Vet. J. 2018, 50, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Hardeman, A.M.; Serra Bragança, F.M.; Swagemakers, J.H.; van Weeren, P.R.; Roepstorff, L. Variation in gait parameters used for objective lameness assessment in sound horses at the trot on the straight line and the lunge. Equine Vet. J. 2019, 51, 831–839. [Google Scholar] [CrossRef]
- Hardeman, A.M.; Egenvall, A.; Serra Bragança, F.M.; Koene, M.H.W.; Swagemakers, J.-H.; Roepstorff, L.; van Weeren, R.; Byström, A. Movement asymmetries in horses presented for prepurchase or lameness examination. Equine Vet. J. 2022, 54, 334–346. [Google Scholar] [CrossRef]
- Dalla Costa, E.; Stucke, D.; Dai, F.; Minero, M.; Leach, M.C.; Lebelt, D. Using the Horse Grimace Scale (HGS) to Assess Pain Associated with Acute Laminitis in Horses (Equus caballus). Animals 2016, 6, 47. [Google Scholar] [CrossRef]
- Muir, W.W. Pain: Mechanisms and management in horses. Vet. Clin. N. Am. Equine Pract. 2010, 26, 467–480. [Google Scholar] [CrossRef]
- Sanchez, L.C.; Robertson, S.A. Pain control in horses: What do we really know? Equine Vet. J. 2014, 46, 517–523. [Google Scholar] [CrossRef]
- van Loon, J.P.A.M.; van Dierendonck, M.C. Objective pain assessment in horses (2014–2018). Vet. J. 2018, 242, 1–7. [Google Scholar] [CrossRef]
- Taylor, P.M.; Pascoe, P.J.; Mama, K.R. Diagnosing and treating pain in the horse. Where are we today? Vet. Clin. N. Am. Equine Pract. 2002, 18, 1–19. [Google Scholar] [CrossRef]
- Pain Recognition and Management in Horses|News|Merck Equine. Available online: https://www.merck-animal-health-equine.com/news/article/34 (accessed on 17 December 2023).
- Starke, S.D.; May, S.A. Expert visual assessment strategies for equine lameness examinations in a straight line and circle: A mixed methods study using eye tracking. Vet. Rec. 2022, 191, e1684. [Google Scholar] [CrossRef] [PubMed]
- Starke, S.D.; Oosterlinck, M. Reliability of equine visual lameness classification as a function of expertise, lameness severity and rater confidence. Vet. Rec. 2019, 184, 63. [Google Scholar] [CrossRef] [PubMed]
- Dyson, S.; Berger, J.; Ellis, A.D.; Mullard, J. Development of an ethogram for a pain scoring system in ridden horses and its application to determine the presence of musculoskeletal pain. J. Vet. Behav. 2018, 23, 47–57. [Google Scholar] [CrossRef]
- Dyson, S.; Pollard, D. Determination of Equine Behaviour in Subjectively Non-Lame Ridden Sports Horses and Comparison with Lame Sports Horses Evaluated at Competitions. Animals 2024, 14, 1831. [Google Scholar] [CrossRef] [PubMed]
- Safryghin, A.; Hebesberger, D.V.; Wascher, C.A.F. Testing for Behavioral and Physiological Responses of Domestic Horses (Equus caballus) Across Different Contexts—Consistency over Time and Effects of Context. Front. Psychol. 2019, 10, 849. [Google Scholar] [CrossRef]
- Henshall, C.; Randle, H.; Francis, N.; Freire, R. Habit Formation and the Effect of Repeated Stress Exposures on Cognitive Flexibility Learning in Horses. Animals 2022, 12, 2818. [Google Scholar] [CrossRef]
- Simegnaw, A.A.; Teyeme, Y.; Malengier, B.; Tesfaye, T.; Daba, H.; Esmelealem, K.; van Langenhove, L. Smart Shirt for Measuring Trunk Orientation. Sensors 2022, 22, 9090. [Google Scholar] [CrossRef]
- Auer, U.; Kelemen, Z.; Engl, V.; Jenner, F. Activity Time Budgets-A Potential Tool to Monitor Equine Welfare? Animals 2021, 11, 850. [Google Scholar] [CrossRef]
- Bosch, S.; Serra Bragança, F.; Marin-Perianu, M.; Marin-Perianu, R.; van der Zwaag, B.J.; Voskamp, J.; Back, W.; van Weeren, R.; Havinga, P. EquiMoves: A Wireless Networked Inertial Measurement System for Objective Examination of Horse Gait. Sensors 2018, 18, 850. [Google Scholar] [CrossRef]
- Crecan, C.M.; Peștean, C.P. Inertial Sensor Technologies-Their Role in Equine Gait Analysis, a Review. Sensors 2023, 23, 6301. [Google Scholar] [CrossRef]
- Calle-González, N.; Lo Feudo, C.M.; Ferrucci, F.; Requena, F.; Stucchi, L.; Muñoz, A. Objective Assessment of Equine Locomotor Symmetry Using an Inertial Sensor System and Artificial Intelligence: A Comparative Study. Animals 2024, 14, 921. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.R.; Geburek, F.; Hagen, J.; Büttner, K.; Cruz, A.M.; Röcken, M. Bilateral Change in Vertical Hoof Force Distribution in Horses with Unilateral Forelimb Lameness before and after Successful Diagnostic Anaesthesia. Animals 2022, 12, 2485. [Google Scholar] [CrossRef] [PubMed]
- Patterson-Kane, J.C.; Karikoski, N.P.; McGowan, C.M. Paradigm shifts in understanding equine laminitis. Vet. J. 2018, 231, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Dallaire, A. Rest behavior. Vet. Clin. N. Am. Equine Pract. 1986, 2, 591–607. [Google Scholar] [CrossRef]
- Dallaire, A.; Ruckebusch, Y. Sleep patterns in the pony with observations on partial perceptual deprivation. Physiol. Behav. 1974, 12, 789–796. [Google Scholar] [CrossRef]
Horse Number | Breed | Year of Birth | Sex | Non-Lame | Lameness (Side, Degree) | Test Date |
---|---|---|---|---|---|---|
1 | Holstein | 2012 | Female (F) | RH (right hind) (3/5) | 30 January 2020 | |
2 | Pura Raza Espanola | 2003 | Male (M) | RH (3/5) | 3 February 2020 | |
3 | Holstein | 2003 | M | X | 2 March 2020 | |
4 | Holstein | 2012 | M | RH (3/5) | 9 March 2020 | |
5 | Hanoverian | 2011 | M | LH (left hind) (3/5) | 22 March 2020 | |
6 | Hanoverian | 2013 | F | LH (3/5) | 30 March 2020 | |
7 | Holstein | 2011 | M | X | 31 March 2020 | |
8 | Oldenburg | 2011 | F | LH (2.5/5) | 19 April 2020 | |
9 | Hanoverian | 2013 | F | LH (1.5/5) | 27 April 2020 | |
10 | German Sporthorse | 2009 | F | RH (3.5/5) | 19 May 2020 | |
11 | Holstein | 2006 | F | RH (2/5) | 5 June 2020 | |
12 | Pinto Hunter | 2001 | F | LH (3.5/5) | 10 June 2020 | |
13 | Pony | 2003 | F | LH (4/5) | 21 July 2020 | |
14 | Icelandic horse | 2007 | M | X | 31 July 2020 | |
15 | Hanoverian | 2014 | M | LH (1.5/5) | 20 August 2020 | |
16 | Hanoverian | 1993 | M | RH (3/5) | 26 August 2020 | |
17 | Hanoverian | 2010 | M | LH (3.5/5) | 21 October 2020 | |
18 | Trakehner | 2017 | M | X | 15 October 2020 | |
19 | Hanoverian | 2008 | M | X | 19 October 2020 | |
20 | Holstein | 2005 | M | X | 20 October 2020 | |
21 | Hanoverian | 2014 | M | RH (2/5) | 20 October 2020 | |
22 | Hanoverian | 2010 | M | RH (3.5/5) | 17 November 2020 | |
23 | Hanoverian | 2013 | M | RH (3/5) | 17 November 2020 | |
24 | Hanoverian | 2012 | M | RH (3.5/5) | 18 November 2020 | |
25 | Haflinger | 2010 | M | X | 1 August 2017 | |
26 | Haflinger | 2011 | M | X | 2 August 2017 | |
27 | Standardbred | 2002 | M | X | 19 August 2017 | |
28 | Czech Warmblood | 1992 | F | RH (3.5/5) | 21 July 2017 | |
29 | Norwegian Cross | 2005 | F | X | 17 August 2017 | |
30 | Standardbred | 1992 | M | RH (4/5) | 4 August 2017 |
Vet Score (AAEP Scale) | Lameness Locator (mm) | Rest/Lame (%) | Rest/Non-Lame (%) | Time Spent Lying Down (Minutes) | Resting Relation | ||
---|---|---|---|---|---|---|---|
Horse 1 | lame | 3 | 15.1 | 86 | 14 | 184 | 0.16 |
Horse 2 | lame | 3 | 7.4 | 66 | 34 | 101 | 0.52 |
Horse 4 | lame | 3 | 17 | 54 | 46 | 245 | 0.85 |
Horse 5 | lame | 3 | 2.6 | 58 | 42 | 19 | 0.72 |
Horse 6 | lame | 3 | 17.8 | 16 | 84 | 134 | 5.25 |
Horse 8 | lame | 2.5 | 8.2 | 57 | 43 | 0 | 0.75 |
Horse 9 | lame | 1.5 | 4.4 | 40 | 60 | 72 | 1.50 |
Horse 10 | lame | 3.5 | 4.3 | 72 | 28 | 114 | 0.39 |
Horse 11 | lame | 2 | 7.2 | 63 | 37 | 56 | 0.59 |
Horse 12 | lame | 3.5 | 12.4 | 94 | 6 | 106 | 0.06 |
Horse 13 | lame | 4 | 18.3 | 100 | 0 | 143 | 0.00 |
Horse 15 | lame | 1.5 | 4.7 | 29 | 71 | 84 | 2.45 |
Horse 16 | lame | 3 | 6.5 | 47 | 53 | 0 | 1.13 |
Horse 17 | lame | 3.5 | 11.9 | 100 | 0 | 0 | 0.00 |
Horse 21 | lame | 2 | 7.7 | 47 | 53 | 114 | 1.13 |
Horse 22 | lame | 3.5 | 7.7 | 79 | 21 | 51 | 0.27 |
Horse 23 | lame | 3 | 7.9 | 66 | 34 | 73 | 0.52 |
Horse 24 | lame | 3.5 | 22 | 73 | 27 | 184 | 0.37 |
Horse 28 | lame | 3.5 | 9.9 | 84 | 16 | 0 | 0.19 |
Horse 30 | lame | 4 | 17.2 | 93 | 7 | 0 | 0.08 |
Vet Score (AAEP) | Lameness Locator (mm) | Rest/Left (%) | Rest/Right (%) | Time Spent Lying Down (Minutes) | Resting Relation | ||
---|---|---|---|---|---|---|---|
Horse 3 | non-lame | 0 | 4.7 | 36 | 64 | 0 | 1.78 |
Horse 7 | non-lame | 0 | 9.5 | 41 | 59 | 96 | 1.44 |
Horse 14 | non-lame | 0 | 3 | 59 | 41 | 68 | 0.69 |
Horse 18 | non-lame | 0 | 1.7 | 55 | 45 | 0 | 0.82 |
Horse 19 | non-lame | 0 | 4.3 | 37 | 63 | 1 | 1.70 |
Horse 20 | non-lame | 0 | 3.7 | 40 | 60 | 0 | 1.50 |
Horse 25 | non-lame | 0 | 12.7 | 63 | 37 | 1 | 0.59 |
Horse 26 | non-lame | 0 | 4.4 | 66 | 34 | 0 | 0.52 |
Horse 27 | non-lame | 0 | 5.9 | 52 | 48 | 0 | 0.92 |
Horse 29 | non-lame | 0 | 8.2 | 53 | 47 | 0 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uellendahl, A.; Schramel, J.P.; Tichy, A.; Peham, C. Monitoring of Non-Lame Horses and Horses with Unilateral Hindlimb Lameness at Rest with the Aid of Accelerometers. Sensors 2024, 24, 7203. https://doi.org/10.3390/s24227203
Uellendahl A, Schramel JP, Tichy A, Peham C. Monitoring of Non-Lame Horses and Horses with Unilateral Hindlimb Lameness at Rest with the Aid of Accelerometers. Sensors. 2024; 24(22):7203. https://doi.org/10.3390/s24227203
Chicago/Turabian StyleUellendahl, Anja, Johannes P. Schramel, Alexander Tichy, and Christian Peham. 2024. "Monitoring of Non-Lame Horses and Horses with Unilateral Hindlimb Lameness at Rest with the Aid of Accelerometers" Sensors 24, no. 22: 7203. https://doi.org/10.3390/s24227203
APA StyleUellendahl, A., Schramel, J. P., Tichy, A., & Peham, C. (2024). Monitoring of Non-Lame Horses and Horses with Unilateral Hindlimb Lameness at Rest with the Aid of Accelerometers. Sensors, 24(22), 7203. https://doi.org/10.3390/s24227203