Targeted Biofeedback Training to Improve Gait Parameters in Subacute Stroke Patients: A Single-Blind Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumental Gait Analysis
2.3. BFB Training Technique
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spencer, J.; Wolf, S.L.; Kesar, T.M. Biofeedback for post-stroke gait retraining: A review of current evidence and future research directions in the context of emerging technologies. Front. Neurol. 2021, 12, 637199. [Google Scholar] [CrossRef] [PubMed]
- Genthe, K.; Schenck, C.; Eicholtz, S.; Zajac-Cox, L.; Wolf, S.; Kesar, T.M. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke. Top. Stroke Rehabil. 2018, 25, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Hollands, K.L.; Pelton, T.A.; Tyson, S.F.; Hollands, M.A.; van Vliet, P.M. Interventions for coordination of walking following stroke: Systematic review. Gait Posture 2012, 35, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Chamorro-Moriana, G.; Moreno, A.J.; Sevillano, H. Technology-Based Feedback and Its Efficacy in Improving Gait Parameters in Patients with Abnormal Gait: A Systematic Review. Sensors 2018, 18, 142. [Google Scholar] [CrossRef] [PubMed]
- Nadeau, S.; Betschart, M.; Bethoux, F. Gait analysis for poststroke rehabilitation: The relevance of biomechanical analy-sis and the impact of gait speed. Phys. Med. Rehabil. Clin. N. Am. 2013, 24, 265–276. [Google Scholar] [CrossRef]
- Harris-Love, M.L.; Forrester, L.W.; Macko, R.F.; Silver, K.H.; Smith, G.V. Hemiparetic gait parameters in overground versus treadmill walking. Neurorehabilit. Neural Repair. 2001, 15, 105–112. [Google Scholar] [CrossRef]
- Horak, F.; King, L.; Mancini, M. Role of body-worn movement monitor technology for balance and gait rehabilitation. Phys. Ther. 2015, 95, 461–470. [Google Scholar] [CrossRef]
- Patterson, K.K.; Gage, W.H.; Brooks, D.; Black, S.E.; McIlroy, W.E. Evaluation of gait symmetry after stroke: A comparison of current methods and rec-ommendations for standardization. Gait Posture 2010, 31, 241–246. [Google Scholar] [CrossRef]
- Skvortsov, D.V.; Kaurkin, S.N.; Ivanova, G.E. A study of biofeedback gait training in cerebral stroke patients in the early recovery phase with stance phase as target parameter. Sensors 2021, 21, 7217. [Google Scholar] [CrossRef]
- Perry, J.; Burnfield, J.M. Gait Analysis: Normal and Pathological Function; Slack Incorporated: West Deptford, NJ, USA, 2010; 576p. [Google Scholar]
- Skvortsov, D.; Chindilov, D.; Painev, N.; Rozov, A. Heel-Strike and Toe-Off Detection Algorithm Based on Deep Neural Networks Using Shank-Worn Inertial Sensors for Clinical Purpose. J. Sens. 2023, 2023, 7538611. [Google Scholar] [CrossRef]
- Begg, R.; Galea, M.P.; James, L.; Sparrow, W.A.T.; Levinger, P.; Khan, F.; Said, C.M. Real-time foot clearance biofeedback to assist gait rehabilitation following stroke: A randomized controlled trial protocol. Trials 2019, 20, 317. [Google Scholar] [CrossRef] [PubMed]
- Nagano, H.; Said, C.M.; James, L.; Begg, R.K. Feasibility of Using Foot-Ground Clearance Biofeedback Training in Treadmill Walking for Post-Stroke Gait Rehabilitation. Brain Sci. 2020, 10, 978. [Google Scholar] [CrossRef] [PubMed]
- Khallaf, M.E.; Gabr, A.M.; Fayed, E.E. Effect of Task Specific Exercises, Gait Training, and Visual Biofeedback on Equinovarus Gait among Individuals with Stroke: Randomized Controlled Study. Neurol. Res. Int. 2014, 2014, 693048. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Oh, D.W. Use of real-time visual feedback during overground walking training on gait symmetry and velocity in patients with post-stroke hemiparesis: Randomized controlled, single-blind study. Int. J. Rehabil. Res. 2020, 43, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Tate, J.J.; Milner, C.E. Real-time kinematic, temporospatial, and kinetic biofeedback during gait retraining in pa-tients: A systematic review. Phys. Ther. 2010, 90, 1123–1134. [Google Scholar] [CrossRef]
- Druzbicki, M.; Przysada, G.; Guzik, A.; Brzozowska-Mago, A.; Kołodziej, K.; Wolan-Nieroda, A.; Majewska, J.; Kwolek, A. The efficacy of gait training using a body weight support treadmill and visual biofeedback in patients with sub-acute stroke: A randomized controlled trial. BioMed Res. Int. 2018, 2018, 3812602. [Google Scholar] [CrossRef]
- Druzbicki, M.; Guzik, A.; Przysada, G.; Kwolek, A.; Brzozowska-Mago, A. Efficacy of gait training using a treadmill with and without visual biofeedback in patients after stroke: A randomized study. J. Rehabil. Med. 2015, 47, 419–425. [Google Scholar] [CrossRef]
- Brasileiro, A.; Gama, G.; Trigueiro, L.; Ribeiro, T.; Silva, E.; Galvão, É.; Lindquist, A. Influence of visual and auditory bi-ofeedback on partial body weight support treadmill training of individuals with chronic hemiparesis: A randomized controlled clinical trial. Eur. J. Phys. Rehabil. Med. 2015, 51, 49–58. [Google Scholar]
- Aruin, A.S.; Hanke, T.A.; Sharma, A. Base of support feedback in gait rehabilitation. Int. J. Rehabil. Res. 2003, 26, 309–312. [Google Scholar] [CrossRef]
- Drużbicki, M.; Guzik, A.; Przysada, G.; Kwolek, A.; Brzozowska-Mago, A.; Sobolewski, M. Changes in Gait Symmetry After Training on a Treadmill with Biofeedback in Chronic Stroke Patients: A 6-Month Follow-Up From a Randomized Controlled Trial. Med. Sci. Monit. 2016, 22, 4859–4868. [Google Scholar] [CrossRef]
- Kaźmierczak, K.; Wareńczak-Pawlicka, A.; Miedzyblocki, M.; Lisiński, P. Effect of Treadmill Training with Visual Bi-ofeed-back on Selected Gait Parameters in Subacute Hemiparetic Stroke Patients. Int. J. Environ. Res. Public Health 2022, 19, 16925. [Google Scholar] [CrossRef] [PubMed]
- Kantan, P.R.; Dahl, S.; Jørgensen, H.R.; Khadye, C.; Spaich, E.G. Designing Ecological Auditory Feedback on Lower Limb Kinematics for Hemiparetic Gait Training. Sensors 2023, 23, 3964. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar] [PubMed]
- Hsieh, C.L.; Hsueh, I.P.; Mao, H.F. Validity and responsiveness of the rivermead mobility index in stroke patients. Scand J. Rehabil. Med. 2000, 32, 140–142. [Google Scholar] [CrossRef]
- Kawamura, K.; Murayama, K.; Takamura, J.; Minegishi, S. Effect of a weekly functional independence measure scale on the recovery of patient with acute stroke: A retrospective study. Medicine 2022, 101, e28974. [Google Scholar] [CrossRef]
- Van Swieten, J.C.; Koudstaal, P.J.; Visser, M.C.; Schouten, H.J.; van Gijn, J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 1988, 19, 604–607. [Google Scholar] [CrossRef]
- Belkin, A.; Rudnik, E.; Belkin, V.; Pinchuk, E.; Lipovka, N. Optimization of step-by-step care for patients in intensive care units based on grade 6 of the rehabilitation routing scale. J. Phys. Rehabil. Med. 2021, 3, 142–148. (In Russian) [Google Scholar] [CrossRef]
- Chan, P.P.; Tou, J.I.S.; Tse, M.M.; Ng, S.S. Reliability and Validity of the Timed Up and Go Test With a Motor Task in People With Chronic Stroke. Arch. Phys. Med. Rehabil. 2017, 98, 2213–2220. [Google Scholar] [CrossRef]
- Hauser, S.L.; Dawson, D.M.; Lehrich, J.R.; Beal, M.F.; Kevy, S.V.; Propper, R.D.; Mills, J.A.; Weiner, H.L. Intensive immuno-suppression in progressive multiple sclerosis. A randomized, threearm study of high-dose intravenous cyclophospha-mide, plasma exchange, and ACTH. N. Engl. J. Med. 1983, 308, 173–180. [Google Scholar] [CrossRef]
- Miyata, K.; Tamura, S.; Kobayashi, S.; Takeda, R.; Iwamoto, H. Berg Balance Scale is a Valid Measure for Plan Interven-tions and for Assessing Changes in Postural Balance in Patients with Stroke. J. Rehabil. Med. 2022, 54, jrm00359. [Google Scholar] [CrossRef]
- Paternostro-Sluga, T.; Grim-Stieger, M.; Posch, M.; Schuhfried, O.; Vacariu, G.; Mittermaier, C.; Bittner, C.; Fialka-Moser, V. Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. J. Rehabil. Med. 2008, 40, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Mohan, D.M.; Khandoker, A.H.; Wasti, S.A.; Ismail Ibrahim Ismail Alali, S.; Jelinek, H.F.; Khalaf, K. Assessment methods of post-stroke gait: A scoping review of technolo-gy-driven approaches to gait characterization and analysis. Front. Neurol. 2021, 12, 650024. [Google Scholar] [CrossRef] [PubMed]
- Kirtley, C. Clinical Gait Analysis: Theory and Practice; Churchill Livingstone: London, UK, 2006; 328p, ISBN 0-4431-0009-8. [Google Scholar]
- Romano, C.; Nicolò, A.; Innocenti, L.; Bravi, M.; Miccinilli, S.; Sterzi, S.; Sacchetti, M.; Schena, E.; Massaroni, C. Respira-tory Rate Estimation during Walking and Running Using Breathing Sounds Recorded with a Microphone. Biosensors 2023, 13, 637. [Google Scholar] [CrossRef] [PubMed]
- Lopes, P.G.; Lopes, J.A.; Brito, C.M.; Alfieri, F.M.; Rizzo Battistella, L. Relationships of Balance, Gait Performance, and Functional Outcome in Chronic Stroke Patients: A Comparison of Left and Right Lesions. BioMed Res. Int. 2015, 2015, 716042. [Google Scholar] [CrossRef]
- An, C.M.; Son, Y.L.; Young-Hyun Park, Y.H.; Moon, S.J. Relationship between dynamic balance and spatiotemporal gait symmetry in hemiplegic patients with chronic stroke. Hong Kong Physiother. J. 2017, 37, 19–24. [Google Scholar] [CrossRef]
- Shurupova, M.A.; Aizenshtein, A.D.; Trofimova, A.K.; Ivanova, G.E. Clinical and anamnestic data that affect the out-come of rehabilitation on virtual reality in patients with stroke. S.S. Korsakov J. Neurol. Psychiatry = Zhurnal Nevrol. I Psikhiatrii Im. S.S. Korsakova 2021, 121, 33–40. (In Russian) [Google Scholar] [CrossRef]
- Balaban, B.; Tok, F. Gait disturbances in patients with stroke. PM&R 2014, 6, 635–642. [Google Scholar] [CrossRef]
- Guzik, A.; Drużbicki, M. Application of the gait deviation index in the analysis of post-stroke hemiparetic gait. J. Biomech. 2020, 99, 109575. [Google Scholar] [CrossRef]
- Giraldo-Pedroza, A.; Lee, W.C.-C.; Lam, W.-K.; Coman, R.; Alici, G. A Wearable Biofeedback Device to Increase Gait Swing Time Could Have Positive Effects on Gait among Older Adults. Sensors 2022, 22, 102. [Google Scholar] [CrossRef]
Group | Number (Males/Females | Hemiparesis Right/Left | Age (Years) | Height (sm) | Weight (kg) | Days After Stroke |
---|---|---|---|---|---|---|
SPG | 15/5 | 9/11 | 49.0 ± 12.4 (23–65) | 176.3 ± 8.5 (159–195) | 79.5 ± 13.3 (49–102) | 113.0 ± 47.9 (28–179) |
SSPG | 10/10 | 11/9 | 55.0 ± 11.5 (35–74) | 174.4 ± 8.1 (159–187) | 78.9 ± 10.8 (59–95) | 100.7 ± 58.6 (25–179) |
Control | 10/10 | - | 28.8 ± 3.7 (23–35) | 176.8 ± 5.5 (168–188) | 76.2 ± 14.1 (55–100) | - |
Scale | SPG | SSPG | ||
---|---|---|---|---|
Before | After | Before | After | |
Barthel Index | 74.7 ± 10.3 | 81.7 ± 10.3 * | 73.7 ± 8.4 | 85.5 ± 10.5 * |
Rivermead | 9.4 ± 2.1 | 11.0 ± 2.1 * | 8.8 ± 1.9 | 10.8 ± 1.7 * |
Rankin Scale | 3.0 ± 0.0 | 2.8 ± 0.4 * | 3.0 ± 0.0 | 2.6 ± 0.7 * |
RRS | 3.0 ± 0.3 | 2.8 ± 0.4 * | 3.0 ± 0.0 | 2.6 ± 0.7 * |
Berg Balance | 46.9 ± 4.6 | 50.2 ± 3.9 * | 39.8 ± 5.9 † | 45.8 ± 5.9 *† |
FIM | 12.6 ± 0.8 | 12.8 ± 0.9 * | 12.0 ± 1.5 | 12.3 ± 1.4 * |
TUG | 22.5 ± 6.3 | 18.0 ± 5.4 * | 25.3 ± 7.1 | 20.0 ± 7.5 * |
Hauser Index | 3.3 ± 0.4 | 2.7 ± 0.7 * | 3.1 ± 0.8 | 2.9 ± 0.6 * |
Parameter | Group | Before | After | Control | ||
---|---|---|---|---|---|---|
Contralateral | Paretic | Contralateral | Paretic | |||
GC, s | SPG | 1.6 ± 0.3 * | 1.6 ± 0.3 * | 1.5 ± 0.33 * | 1.5 ± 0.3 * | 1.1 ± 0.1 |
SSPG | 1.8 ± 0.5 * | 1.7 ± 0.5 * | 1.8 ± 0.42 * | 1.7 ± 0.4 * | ||
Cadence, steps/min | SPG | 39.8 ± 7.3 * | 40.4 ± 7.4 * | 54.6 ± 3.5 | ||
SSPG | 35.4 ± 9.9 * | 35.5 ± 9.2 * | ||||
Cl, cm | SPG | 12.2 ± 1.8 | 9.9 ± 3.1 *# | 12.6 ± 1.6 | 10.2 ± 3.0 *# | 12.5 ± 2.1 |
SSPG | 10.1 ± 2.8 *& | 8.3 ± 3.3 *# | 10.6 ± 1.9 *& | 9.3 ± 2.5 *$ | ||
V, km/h | SPG | 2.1 ± 0.8 * | 2.3 ± 0.9 *$ | 4.4 ± 0.6 | ||
SSPG | 1.4 ± 0.8 *& | 1.6 ± 0.8 *& | ||||
SL, cm | SPG | 85.4 ± 21.7 * | 90.6 ± 25.4 *$ | 135.6 ± 11.2 | ||
SSPG | 63.2 ± 24.4 *& | 71.5 ± 22.4 *&$ | ||||
SP, % | SPG | 72.8 ± 5.6 * | 63.5 ± 4.3 # | 71.2 ± 4.9 *$ | 64.5 ± 3.6 # | 62.8 ± 1.5 |
SSPG | 76.4 ± 9.8 *& | 69.5 ± 7.4 *&# | 74.1 ± 9.8 *$ | 68.4 ± 8.2 *& | ||
SSP, % | SPG | 36.1 ± 4.3 | 27.1 ± 6.0 *# | 35.8 ± 3.6 | 29.1 ± 4.7 *#$ | 37.2 ± 1.4 |
SSG | 31.0 ± 6.6 & | 24.2 ± 9.2 # | 32.3 ± 8.2 | 26.5 ± 9.3 # | ||
DSP, % | SPG | 36.7 ± 8.3 * | 36.4 ± 8.0 * | 35.4 ± 6.8 * | 35.3 ± 6.7 * | 25.6 ± 2.7 |
SSPG | 44.2 ± 14.7 *& | 43.6 ± 15.0 *& | 41.9 ± 15.9 * | 42.1 ± 16.1 * |
Parameter | Group | Before | After | Control | ||
---|---|---|---|---|---|---|
Contralateral | Paretic | Contralateral | Paretic | |||
HA | SPG | 29.7 ± 3.8 * | 24.3 ± 5.6 *# | 31.1 ± 4.9 | 24.1 ± 5.9 *# | 33.2 ± 4.8 |
SSPG | 25.5 ± 6.7 *& | 17.8 ± 6.4 *#& | 26.1 ± 5.2 *& | 18.8 ± 6.9 *#& | ||
Ka1 | SPG | 7.3 ± 4.3 * | 5.8 ± 4.6 * | 7.1 ± 5.7 * | 8.1 ± 5.6 *& | 14.6 ± 3.5 |
SSPG | 5.7 ± 4.8 * | 5.6 ± 4.2 * | 5.0 ± 4.3 * | 6.5 ± 5.1 * | ||
Ka2 | SPG | −2.1 ± 9.1 * | −6.1 ± 6.6 *# | −2.7 ± 10.7 * | −1.7 ± 7.5 *$ | 4.8 ± 4.8 |
SSPG | −0.5 ± 6.9 * | 0.4 ± 6.6 *& | −2.3 ± 9.0 * | 1.8 ± 6.1 #& | ||
Ka3 | SPG | 45.2 ± 9.9 * | 25.4 ± 12.9 *# | 47.3 ± 10.3 * | 29.0 ± 14.6 * | 56.50 ± 7.33 |
SSPG | 39.8 ± 11.4 * | 27.0 ± 13.6 *# | 40.4 ± 10.8 *& | 32.3 ± 16.4 *#$ | ||
AA | SPG | 25.8 ± 5.6 * | 22.4 ± 8.3 *# | 26.7 ± 6.0 * | 22.8 ± 6.2 *# | 33.4 ± 6.2 |
SSPG | 21.8 ± 4.5 *& | 19.9 ± 6.9 * | 23.0 ± 7.0 * | 23.7 ± 13.2 * |
Muscle | Group | Before | After | Control | ||
---|---|---|---|---|---|---|
Contralateral | Paretic | Contralateral | Paretic | |||
TA | SPG | 141.3 ± 56.4 | 110.4 ± 59.5 *# | 132.7 ± 48.3 | 111.2 ± 54.5 * | 139.6 ± 38.4 |
SSPG | 148.9 ± 66.5 | 108.6 ± 67.0 *# | 144.8 ± 65.8 | 111.0 ± 59.6 *# | ||
GA | SPG | 115.7 ± 60.6 | 54.4 ± 35.3 *# | 106.8 ± 54.1 | 69.0 ± 52.8 *# | 118.0 ± 43.8 |
SSPG | 106.6 ± 43.3 | 64.2 ± 51.0 *# | 112.4 ± 56.2 | 62.7 ± 37.0 *# | ||
QA | SPG | 57.3 ± 23.2 | 50.5 ± 39.2 | 73.5 ± 30.6 | 57.0 ± 37.5 | 64.8 ± 45.5 |
SSPG | 55.6 ± 31.6 | 50.9 ± 29.2 | 46.2 ± 20.9 | 50.4 ± 28.4 | ||
HA | SPG | 82.2 ± 39.8 | 52.0 ± 36.1 *# | 82.5 ± 40.2 | 48.3 ± 33.2 *# | 75.5 ± 33.1 |
SSPG | 70.3 ± 35.3 | 45.2 ± 28.5 *# | 61.5 ± 33.2 | 41.6 ± 27.4 *# |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skvortsov, D.V.; Kaurkin, S.N.; Ivanova, G.E. Targeted Biofeedback Training to Improve Gait Parameters in Subacute Stroke Patients: A Single-Blind Randomized Controlled Trial. Sensors 2024, 24, 7212. https://doi.org/10.3390/s24227212
Skvortsov DV, Kaurkin SN, Ivanova GE. Targeted Biofeedback Training to Improve Gait Parameters in Subacute Stroke Patients: A Single-Blind Randomized Controlled Trial. Sensors. 2024; 24(22):7212. https://doi.org/10.3390/s24227212
Chicago/Turabian StyleSkvortsov, Dmitry V., Sergey N. Kaurkin, and Galina E. Ivanova. 2024. "Targeted Biofeedback Training to Improve Gait Parameters in Subacute Stroke Patients: A Single-Blind Randomized Controlled Trial" Sensors 24, no. 22: 7212. https://doi.org/10.3390/s24227212
APA StyleSkvortsov, D. V., Kaurkin, S. N., & Ivanova, G. E. (2024). Targeted Biofeedback Training to Improve Gait Parameters in Subacute Stroke Patients: A Single-Blind Randomized Controlled Trial. Sensors, 24(22), 7212. https://doi.org/10.3390/s24227212