Trading Community Analysis of Countries’ Roll-On/Roll-Off Shipping Networks Using Fine-Grained Vessel Trajectory Data
Abstract
:1. Introduction
2. Literature Review
2.1. Analysis of Shipping Networks Based on the Complex Network Theory
2.2. Graph Convolutional Neural Networks (GCNs) for Feature Extraction
3. Data and Methodology
3.1. Data and Network Construction
3.2. Methodology
3.2.1. Analysis of Network Features
3.2.2. GNN-Based Feature Extraction and Community Detection
- (1)
- Feature extraction model design
- (2)
- Dimensionality reduction-based clustering and community detection
- (3)
- Evaluation indicators
4. Results
4.1. Network Feature Analysis
4.1.1. Node Degree
4.1.2. Clustering Coefficient
4.1.3. Node Degree Centrality
4.1.4. Hub Nations
4.1.5. Comprehensive Evaluation Indicators
4.2. Feature Extraction and Community Detection Analysis of the RO/RO Shipping Network
4.2.1. Experimental Results
4.2.2. Community Structure
- (1)
- Community Numbers
- (2)
- Community detection of the RO/RO shipping network based on the GIN model
- (3)
- The characteristics of the communities
5. Discussion and Policy Implications
5.1. Discussion
5.2. Policy Implications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paraskevadakis, D.; Ifeoluwa, A. An industry-level analysis of the post-Brexit and post-COVID 19 Ro-Ro ferry market and critical maritime freight transport links between the UK and the EU. J. Shipp. Trade 2022, 7, 27. [Google Scholar] [CrossRef]
- Yoo, J.Y. Global Logistics Trend Spillover Through Container and RoRo Global Logistics Trend Spillover Through Container and RoRo Shipping in North Europe Short Sea Shipping. Master’s Thesis, World Maritime University, Malmö, Sweden, 2018. [Google Scholar]
- Zheng, X.B.; Kim, Y.S.; Shin, Y.R. Cost effectiveness analysis in short sea shipping: Evidence from Northeast Asian routes. J. Mar. Sci. Eng. 2021, 9, 1340. [Google Scholar] [CrossRef]
- A UN Framework for the Immediate Socio-Economic Response to COVID-19. Available online: https://unsdg.un.org/resources/un-framework-immediate-socio-economic-response-covid-19 (accessed on 1 November 2024).
- Grzelakowski, A.S. The COVID 19 pandemic–challenges for maritime transport and global logistics supply chains. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2022, 16, 71–77. [Google Scholar] [CrossRef]
- Jin, L.; Chen, J.; Chen, Z.; Sun, X.; Yu, B. Impact of COVID-19 on China’s international liner shipping network based on AIS data. Transp. Policy 2022, 121, 90–99. [Google Scholar] [CrossRef]
- Michail, N.A.; Kostis, D.M. Shipping markets in turmoil: An analysis of the COVID-19 outbreak and its implications. Transp. Res. Interdiscip. Perspect. 2020, 7, 100178. [Google Scholar] [CrossRef]
- Kurt, I. Lessons learned from COVID-19 in terms of port operations: Evidence from Turkish ports. Res. Transp. Bus. Manag. 2023, 51, 101055. [Google Scholar] [CrossRef]
- Statement on the Fifteenth Meeting of the IHR (2005) Emergency Committee on the COVID-19 Pandemic. Available online: https://www.who.int//news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic (accessed on 1 November 2024).
- Seddiek, I.S.; Ammar, N.R. Technical and eco-environmental analysis of blue/green ammonia-fueled RO/RO ships. Transp. Res. Part D Transp. Environ. 2023, 114, 103547. [Google Scholar] [CrossRef]
- Jovanović, I.; Vladimir, N.; Perčić, M.; Koričan, M. The feasibility of autonomous low-emission ro-ro passenger shipping in the Adriatic Sea. Ocean. Eng. 2022, 247, 110712. [Google Scholar] [CrossRef]
- Jia, B.; Rytter, N.G.M.; Reinhardt, L.B.; Haulot, G.; Billesø, M.B. Estimating discharge time of cargo units—A case of Ro-Ro shipping. In Proceedings of the 10th International Conference on Computational Logistics (ICCL 2019), Barranquilla, Colombia, 30 September–2 October 2019. [Google Scholar]
- Puisa, R. Optimal stowage on Ro-Ro decks for efficiency and safety. J. Mar. Eng. Technol. 2021, 20, 17–33. [Google Scholar] [CrossRef]
- Guerrero, D.; Letrouit, L.; Pais-Montes, C. The container transport system during COVID-19: An analysis through the prism of complex networks. Transp. Policy 2022, 115, 113–125. [Google Scholar] [CrossRef]
- Qian, B. Analysis of Southeast Asian Shipping Network Based on Complex Network. Int. Core J. Eng. 2021, 7, 360–372. [Google Scholar]
- Peng, P.; Poon, J.P.; Cheng, S.; Dong, Y.; Yang, Y.; Lu, F. Container port influence: A spatial diffusion analysis of global transshipments. Marit. Policy Manag. 2023, 1–18. [Google Scholar] [CrossRef]
- Peng, P.; Yang, Y.; Lu, F.; Cheng, S.; Mou, N.; Yang, R. Modelling the competitiveness of the ports along the Maritime Silk Road with big data. Transp. Res. Part A Policy Pract. 2018, 118, 852–867. [Google Scholar] [CrossRef]
- Wang, P.; Hu, Q.; Xu, Y.; Mei, Q.; Wang, F. Evaluation methods of port dominance: A critical review. Ocean. Coast. Manag. 2021, 215, 105954. [Google Scholar] [CrossRef]
- Peng, P.; Cheng, S.; Lu, F. Characterizing the global liquefied petroleum gas trading community using mass vessel trajectory data. J. Clean. Prod. 2020, 252, 119883. [Google Scholar] [CrossRef]
- Peng, P.; Lu, F.; Cheng, S.; Yang, Y. Mapping the global liquefied natural gas trade network: A perspective of maritime transportation. J. Clean. Prod. 2021, 283, 124640. [Google Scholar] [CrossRef]
- Zhang, T.; Xi, D.; Jiang, W.; Feng, Y.; Wang, C.; Hu, X. Structural Characteristics and Evolution of a Weighted Sino-US Container Shipping Network. Chin. Geogr. Sci. 2024, 34, 810–828. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, Q.; Wan, Z. Regional operating patterns of world container shipping network: A perspective from motif identification. Phys. A Stat. Mech. Its Appl. 2022, 607, 128171. [Google Scholar] [CrossRef]
- Ansorena, I.L. Bilateral connectivity in the liner shipping network: An overview. World Rev. Intermodal Transp. Res. 2018, 7, 295–309. [Google Scholar] [CrossRef]
- Calatayud, A.; Mangan, J.; Palacin, R. Vulnerability of international freight flows to shipping network disruptions: A multiplex network perspective. Transp. Res. Part E Logist. Transp. Rev. 2017, 108, 195–208. [Google Scholar] [CrossRef]
- Wu, J.; Lu, J.; Zhang, L.; Fan, H. Spatial heterogeneity among different-sized port communities in directed-weighted global liner shipping network. J. Transp. Geogr. 2024, 114, 103781. [Google Scholar] [CrossRef]
- Zhang, Q.; Zeng, Q. Analyzing the shipping network of the maritime silk road (MSR) based on a complex network. J. Coast. Res. 2019, 98, 344–349. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Zhang, Q.; Qi, X. Data-driven research on the impact of COVID-19 on the global container shipping network. Ocean. Coast. Manag. 2024, 248, 106969. [Google Scholar] [CrossRef]
- Xu, M.; Zhu, Y.; Deng, W.; Shen, Y.; Li, T. Assessing the efficiency and vulnerability of global liner shipping network. Glob. Netw. 2024, 24, e12445. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, N.; Ye, F.; Lau, Y.Y.; Ducruet, C. The complex network analysis of liner shipping networks: Lessons from the merger between COSCO and CSCL. Growth Chang. 2020, 51, 1877–1893. [Google Scholar] [CrossRef]
- Peng, P.; Claramunt, C.; Cheng, S.; Yang, Y.; Lu, F. A multi-layer modelling approach for mining versatile ports of a global maritime transportation network. Int. J. Digit. Earth 2023, 16, 2129–2151. [Google Scholar] [CrossRef]
- Semi-Supervised Classification with Graph Convolutional Networks. Available online: https://arxiv.org/abs/1609.02907 (accessed on 18 September 2024).
- How Powerful Are Graph Neural Networks? Available online: https://arxiv.org/abs/1810.00826 (accessed on 18 September 2024).
- Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. Stat 2017, 1050, 10–48550. [Google Scholar]
- Wen, H.; Lin, Y.; Mao, X.; Wu, F.; Zhao, Y.; Wang, H.; Wan, H. Graph2route: A dynamic spatial-temporal graph neural network for pick-up and delivery route prediction. In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining, Washington, DC, WA, USA, 14–18 August 2022; pp. 4143–4152. [Google Scholar]
- Diao, C.; Zhang, D.; Liang, W.; Li, K.C.; Hong, Y.; Gaudiot, J.L. A novel spatial-temporal multi-scale alignment graph neural network security model for vehicles prediction. IEEE Trans. Intell. Transp. Syst. 2022, 24, 904–914. [Google Scholar] [CrossRef]
- Wang, X.; Ma, Y.; Wang, Y.; Jin, W.; Wang, X.; Tang, J.; Yu, J. Traffic flow prediction via spatial temporal graph neural network. In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 1082–1092. [Google Scholar]
- Gammelli, D.; Yang, K.; Harrison, J.; Rodrigues, F.; Pereira, F.C.; Pavone, M. Graph neural network reinforcement learning for autonomous mobility-on-demand systems. In Proceedings of the 60th IEEE Conference on Decision and Control (CDC), Austin, TX, USA, 13–17 December 2021; pp. 2996–3003. [Google Scholar]
- Patel, K.; Bhatt, C.; Mazzeo, P.L. Improved ship detection algorithm from satellite images using YOLOv7 and graph neural network. Algorithms 2022, 15, 473. [Google Scholar] [CrossRef]
- Altan, D.; Etemad, M.; Marijan, D.; Kholodna, T. Discovering gateway ports in maritime using temporal graph neural network port classification. In Proceedings of the 35th Canadian Conference on Artificial Intelligence, Toronto, ON, Canada, 30 May–2 June 2022. [Google Scholar]
- Xin, R.; Pan, J.; Yang, F.; Yan, X.; Ai, B.; Zhang, Q. Graph deep learning recognition of port ship behavior patterns from a network approach. Ocean. Eng. 2024, 305, 117921. [Google Scholar] [CrossRef]
- Li, L.; Pan, M.; Liu, Z.; Sun, H.; Zhang, R. Semi-dynamic spatial–temporal graph neural network for traffic state prediction in waterways. Ocean. Eng. 2024, 293, 116685. [Google Scholar] [CrossRef]
- Luo, S.; Zeng, W. Vessel Trajectory Similarity Computation Based on Heterogeneous Graph Neural Network. J. Mar. Sci. Eng. 2023, 11, 1318. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Mei, Q.; Wang, P.; Hu, W.; Wang, Z.; Xie, W.; Yang, Y.; Chen, Y. Research on multi-port ship traffic prediction method based on spatiotemporal graph neural networks. J. Mar. Sci. Eng. 2023, 11, 1379. [Google Scholar] [CrossRef]
- Zheng, G.; Chai, W.K.; Zhang, J.; Katos, V. VDGCNeT: A novel network-wide Virtual Dynamic Graph Convolution Neural network and Transformer-based traffic prediction model. Knowl. Based Syst. 2023, 275, 110676. [Google Scholar] [CrossRef]
- Izadi, S.; Ahmadi, M.; Nikbazm, R. Network traffic classification using convolutional neural network and ant-lion optimization. Comput. Electr. Eng. 2022, 101, 108024. [Google Scholar] [CrossRef]
- D’Angelo, G.; Palmieri, F. Network traffic classification using deep convolutional recurrent autoencoder neural networks for spatial–temporal features extraction. J. Netw. Comput. Appl. 2021, 173, 102890. [Google Scholar] [CrossRef]
- Hevey, D. Network analysis: A brief overview and tutorial. Health Psychol. Behav. Med. 2018, 6, 301–328. [Google Scholar] [CrossRef]
- De Domenico, M.; Biamonte, J. Spectral entropies as information-theoretic tools for complex network comparison. Phys. Rev. X 2016, 6, 041062. [Google Scholar] [CrossRef]
- Franz, M.; Alberts, S.C. Social network dynamics: The importance of distinguishing between heterogeneous and homogeneous changes. Behav. Ecol. Sociobiol. 2015, 69, 2059–2069. [Google Scholar] [CrossRef]
- Javed, M.A.; Younis, M.S.; Latif, S.; Qadir, J.; Baig, A. Community detection in networks: A multidisciplinary review. J. Netw. Comput. Appl. 2018, 108, 87–111. [Google Scholar] [CrossRef]
- Global Trade Outlook and Statistics. Available online: https://www.wto.org/english/res_e/publications_e/trade_outlook24_e.htm (accessed on 2 November 2024).
- Global Supply Chain Risk Report 2023. Available online: https://www.wtwco.com/zh-tw/insights/2023/02/2023-global-supply-chain-risk-report (accessed on 2 November 2024).
- African Economic Outlook 2023. Available online: https://www.afdb.org/en/documents/african-economic-outlook-2023 (accessed on 2 November 2024).
- China-World Bank Group Partnership Fund Progress Report. Available online: https://thedocs.worldbank.org/en/doc/3d9695e1d08f8e81fad7e70966976cb9-0060072023/original/CWPF-Progress-Report-FY17-FY22-Chinese.pdf (accessed on 2 November 2024).
- ASEAN Market Overview. Available online: https://research.hktdc.com/sc/article/Mzk5MzcxNjEz (accessed on 2 November 2024).
- Kimata, J.; Okamoto, T.; Takebayashi, M. How to Establish West Japan-ASEAN RORO Ship Route?: Based on Network Analysis. J. East. Asia Soc. Transp. Stud. 2019, 13, 2278–2294. [Google Scholar]
- Krüger, S.; Marius, S.M.; Jahn, C. Potential of container terminal operations for RoRo terminals. In Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management–Innovative Approaches for the Shift to a New Era, Proceedings of the Hamburg International Conference of Logistics (HICL), Hamburg, Germany, 21–23 September 2022; Epubli GmbH: Berlin, Germany, 2022; Volume 33, pp. 591–613. [Google Scholar]
- Santos, T.A.; Fonseca, M.Â.; Martins, P.; Soares, C.G. Integrating short sea shipping with trans-European transport networks. J. Mar. Sci. Eng. 2022, 10, 218. [Google Scholar] [CrossRef]
2020 | 2021 | 2022 | 2023 | |
---|---|---|---|---|
Number of records | 27,257 | 28,764 | 31,663 | 33,470 |
Number of ports | 473 | 488 | 502 | 537 |
Number of routes | 675 | 710 | 731 | 856 |
Number of nations | 97 | 109 | 112 | 118 |
Metrics | Formulas | Meaning of Variable | |
---|---|---|---|
Complexity | Average clustering coefficient | is the total number of nodes in the graph. is the clustering coefficient of node i. is the number of edges between the neighbors of node i. is the degree of node i. | |
Graph entropy | is the proportion of nodes in the ith category. is number of different categories. | ||
Spectral radius | is the eigenvalue of the adjacency matrix A. | ||
Sparsity | Graph density | is the total number of edges in the graph. is the total number of nodes in the graph. | |
Average degree | Same as graph density. | ||
Homogeneity | Structural homogeneity | is the standard deviation of node degrees. is the average degree of the nodes. | |
Modularity | Modularity | is the adjacency matrix element. is the in-degree of node i. is the out-degree of node j. is a delta function. | |
Hierarchy | Hierarchy coefficient | is the betweenness centrality of node i. is the maximum betweenness centrality value among all nodes in the graph. | |
Hierarchical modularity | is the total number of layers. is the degree of node i at layer l. is the total degree of layer l. | ||
Hierarchical entropy | is the proportion of nodes in the ith category. |
2020 | 2021 | 2022 | 2023 | |
---|---|---|---|---|
Clustering coefficient | 0.56 | 0.59 | 0.57 | 0.63 |
Metrics | 2020 | 2021 | 2022 | 2023 | Random Graph | |
---|---|---|---|---|---|---|
Complexity | Average clustering coefficient | 0.561 | 0.592 | 0.564 | 0.656 | 0.204 |
Graph entropy | 4.244 | 4.271 | 4.284 | 4.538 | 4.908 | |
Spectral radius | 2305 | 2675 | 2794 | 2033 | 14.237 | |
Sparsity | Graph density | 0.106 | 0.121 | 0.118 | 0.105 | 0.106 |
Average degree | 22.43 | 26.055 | 26.107 | 28.642 | 28.715 | |
Homogeneity | Structural homogeneity | 0.062 | 0.014 | 0.019 | 0.062 | 0.846 |
Modularity | Modularity | 0.431 | 0.459 | 0.433 | 0.403 | 0.138 |
Hierarchy | Hierarchy coefficient | 0.44 | 0.509 | 0.533 | 0.575 | 0.417 |
Hierarchical modularity | 0.863 | 0.919 | 0.865 | 1.087 | 1.206 | |
Hierarchical entropy | 0.952 | 0.732 | 0.749 | 0.656 | 0.204 |
C0 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | |
---|---|---|---|---|---|---|---|---|
2020 | 22 | 11 | 4 | 6 | 20 | 13 | 12 | 9 |
2023 | 25 | 14 | 6 | 11 | 19 | 11 | 19 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Sun, T.; Shi, J.; Gong, P.; Yang, X.; Zheng, J.; Zhuang, H.; Ouyang, Q. Trading Community Analysis of Countries’ Roll-On/Roll-Off Shipping Networks Using Fine-Grained Vessel Trajectory Data. Sensors 2024, 24, 7226. https://doi.org/10.3390/s24227226
Huang S, Sun T, Shi J, Gong P, Yang X, Zheng J, Zhuang H, Ouyang Q. Trading Community Analysis of Countries’ Roll-On/Roll-Off Shipping Networks Using Fine-Grained Vessel Trajectory Data. Sensors. 2024; 24(22):7226. https://doi.org/10.3390/s24227226
Chicago/Turabian StyleHuang, Shichen, Tengda Sun, Jing Shi, Piqiang Gong, Xue Yang, Jun Zheng, Huanshuai Zhuang, and Qi Ouyang. 2024. "Trading Community Analysis of Countries’ Roll-On/Roll-Off Shipping Networks Using Fine-Grained Vessel Trajectory Data" Sensors 24, no. 22: 7226. https://doi.org/10.3390/s24227226
APA StyleHuang, S., Sun, T., Shi, J., Gong, P., Yang, X., Zheng, J., Zhuang, H., & Ouyang, Q. (2024). Trading Community Analysis of Countries’ Roll-On/Roll-Off Shipping Networks Using Fine-Grained Vessel Trajectory Data. Sensors, 24(22), 7226. https://doi.org/10.3390/s24227226