Overview of High-Performance Timing and Position-Sensitive MCP Detectors Utilizing Secondary Electron Emission for Mass Measurements of Exotic Nuclei at Nuclear Physics Facilities
Abstract
:1. Introduction
2. MCP Detectors for Mass Measurements of Exotic Nuclei
2.1. Detector Design and Principle of Operation
- Figure 1a shows the mirror-type electrostatic foil-MCP detector. Typically, a timing resolving power of around 40 ps (in ), as reported in [30,84], can be reached using a timing anode coupled to an MCP. A timing and position resolving power of around 50 ps (in ) and ∼1 mm (in ) can be achieved using a delay-line anode for this type of foil-MCP detector [36,84]. The timing resolution will highly depend on the size of the detector.
- Figure 1b shows the direct SE projection electrostatic foil-MCP detector. A good timing resolving power of a few tens of ps can be achieved, but only when the transportation of SEs to the MCP is within a short distance and fast enough to reach a sub-mm position resolving power, typically more than 2 mm (FWHM) [75], to achieve a relatively large active area.
- Figure 1c shows the electrostatic-lens foil-MCP detector. It has a sub-mm position resolution and a timing resolving power of a few tens of ps.
- Figure 1d shows the magnetic field and electrostatic field parallelly arranged foil-MCP detector. It has good position resolving power (sub-mm) but a timing resolving power of a few hundreds of ps.
- Figure 1e illustrates the magnetic field and electrostatic field crossly arranged foil-MCP detector. It has good position resolving power, reaching around 30 ps, and one-dimensional position sensitivity with sub-mm position resolving power.
2.1.1. Conversion Foils and Secondary Electron Yield
2.1.2. Simulation
2.2. Electrostatic Mirror Detector
- 1.
- SE generation and acceleration: front wall with a conversion foil at a potential , and an accelerating plate with grids at potential .
- 2.
- SE reflection: an electrostatic mirror plate at with grids as the back wall to reflect SEs.
- 3.
- SE field-free region and SE detection: the bottom plate () with a circular or rectangular hole, two side walls () to maintain equal potential inside and serve for fixing, and a chevron-type MCP (front surface at ) with a delay-line anode () to detector SEs.
2.3. Electrostatic-Lens Position-Sensitive TOF MCP Detector
2.4. E×B Position-Sensitive Timing MCP Detector
2.5. E‖B Position-Sensitive Timing MCP Detector
3. Calibration of the Position-Sensitive Anode of an MCP Detector
4. Experimental Test of the Detectors
4.1. Experimental Setup
4.1.1. Offline Setup
4.1.2. Online Setup
4.2. Experimental Results of MCP Detectors
4.2.1. Detection Efficiency
4.2.2. Timing Resolution
4.2.3. Position Resolution
5. Application of the Detectors at Nuclear Facilities
5.1. Utilization for Fragment Separator
5.2. Utilization for a New Scheme of Mass Measurements
5.2.1. Mass Measurements by -TOF Method with Beam Line
5.2.2. Mass Measurements with Storage Ring Mass Spectrometry
5.3. The Position-Sensitive Detector Measures the Betatron Function and Dispersion Function in the Ring
6. Discussion and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Electromagnetic Motion of Secondary Electrons
Appendix A.1. Electrostatic Mirror Detector
Appendix A.1.1. Isochronous Condition
Appendix A.1.2. Trajectory Confirmation of SEs by Experimental Data
Appendix A.2. Electrostatic and Magnetic Fields Crossly Arranged Detector
Appendix A.2.1. Electrostatic and Magnetic Fields Parallelly Arranged MCP Detector
References
- Lunney, D.; Pearson, J.M.; Thibault, C. Recent trends in the determination of nuclear masses. Rev. Mod. Phys. 2003, 75, 1021–1082. [Google Scholar] [CrossRef]
- Blaum, K. High-accuracy mass spectrometry with stored ions. Phys. Rev. 2006, 425, 1–78. [Google Scholar] [CrossRef]
- Bianchi, L.; Fernandez, B.; Gastebois, J.; Gillibert, A.; Mittig, W.; Barrette, J. SPEG: An energy loss spectrometer for GANIL. Nucl. Instr. Meth. Phys. Res. A 1989, 276, 509–520. [Google Scholar] [CrossRef]
- Wouters, J.M.; Vieira, D.J.; Wollnik, H.; Enge, H.A.; Kowalski, S.; Brown, K.L. Optical design of the tofi (time-of-flight isochronous) spectrometer for mass measurements of exotic nuclei. Nucl. Instr. Meth. Phys. Res. A 1985, 240, 77–90. [Google Scholar] [CrossRef]
- Meisel, Z.; George, S. Time-of-flight mass spectrometry of very exotic systems. Int. J. Mass Spectrom. 2013, 349–350, 145–150. [Google Scholar] [CrossRef]
- Bollen, G.; Kluge, H.-J.; Otto, T.; Savard, G.; Stolzenberg, H. Ramsey technique applied in a Penning trap mass spectrometer. Nucl. Instrum. Methods B 1992, 70, 490–493. [Google Scholar] [CrossRef]
- Lunney, D.; on behalf of the ISOLTRAP Collaboration. Extending and refining the nuclear mass surface with ISOLTRAP. J. Phys. G Nucl. Part. Phys. 2017, 44, 064008. [Google Scholar] [CrossRef]
- Eronen, T.; Kolhinen, V.S.; Elomaa, V.V.; Gorelov, D.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Karvonen, P.; Kopecky, S.; et al. JYFLTRAP: A Penning trap for precision mass spectroscopy and isobaric purification. Eur. Phys. J. A 2012, 48, 46. [Google Scholar] [CrossRef]
- Rahaman, S.; Block, M.; Ackermann, D.; Beck, D.; Chaudhuri, A.; Eliseev, S.; Geissel, H.; Habs, D.; Herfurth, F.; Heßberger, F.P.; et al. On-line commissioning of SHIPTRAP. Int. J. Mass Spec. 2006, 251, 146. [Google Scholar] [CrossRef]
- Grund, J.; Asai, M.; Blaum, K.; Block, M.; Chenmarev, S.; Düllmann, C.E.; Eberhardt, K.; Lohse, S.; Nagame, Y.; Nagy, S.; et al. First online operation of TRIGA-TRAP. Nucl. Instrum. Methods Phys. Res. A 2020, 972, 164013. [Google Scholar] [CrossRef]
- Savard, G.; Wang, J.C.; Sharma, K.S.; Sharma, H.; Clark, J.A.; Boudreau, C.; Buchinger, F.; Crawford, J.E.; Greene, J.P.; Gulick, S.; et al. Studies of neutron-rich isotopes with the CPT mass spectrometer and the CARIBU project. Int. J. Mass Spectrom. 2006, 251, 252–259. [Google Scholar] [CrossRef]
- Ringle, R.; Schury, P.; Sun, T.; Bollen, G.; Davies, D.; Huikari, J.; Kwan, E.; Morrissey, D.J.; Prinke, A.; Savory, J.; et al. Precision mass measurements with LEBIT at MSU. Int. J. Mass Spectrom. 2006, 251, 300–306. [Google Scholar] [CrossRef]
- Bergström, I.; Carlberg, C.; Fritioff, T.; Douysset, G.; Schönfelder, J.; Schuch, R. SMILETRAPFA Penning trap facility for precision mass measurements using highly charged ions. Nucl. Instrum. Methods A 2002, 487, 618. [Google Scholar] [CrossRef]
- Bosch, F.; Litvinov, Y.A.; Stöhlker, T. Nuclear physics with unstable ions at storage rings. Prog. Part. Nucl. Phys. 2013, 73, 84–140. [Google Scholar] [CrossRef]
- Hausmann, M.; Attallah, F.; Beckert, K.; Bosch, F.; Dolinskiy, A.; Eickhoff, H.; Falch, M.; Franczak, B.; Franzke, B.; Geissel, H.; et al. First isochronous mass spectrometry at the experimental storage ring ESR. Nucl. Instrum. Methods A 2000, 446, 569–580. [Google Scholar] [CrossRef]
- Geissel, H.; Knöbel, R.; Litvinov, Y.A.; Sun, B.; Beckert, K.; Bélier, P.; Bosch, F.; Brandau, C.; Kozhuharov, C.; Kurcewicz, J.; et al. A new experimental approach for isochronous mass measurements of short-lived exotic nuclei with the FRS-ESR facility. Hyperfine Interact. 2006, 173, 49–54. [Google Scholar] [CrossRef]
- Sun, M.Z.; Zhou, X.H.; Wang, M.; Zhang, Y.; Litvinov, Y.A. Precision mass measurements of short-lived nuclides at HIRFL-CSR in Lanzhou. Front. Phys. 2018, 13, 132112. [Google Scholar] [CrossRef]
- Wolf, R.N.; Wienholtz, F.; Atanasov, D.; Beck, D.; Blaum, K.; Borgmann, C.; Herfurth, F.; Kowalska, M.; Kreim, S.; Litvinov, Y.A.; et al. ISOLTRAP’s multi-reflection time-of-flight mass separator/spectrometer. Int. J. Mass Spectrom 2013, 349–350, 123. [Google Scholar] [CrossRef]
- Plaß, W.R.; Dickel, T.; Purushothaman, S.; Dendooven, P.; Geissel, H.; Ebert, J.; Yavor, M.I. The FRS Ion Catcher—A facility for high-precision experiments with stopped projectile and fission fragments. Nucl. Instrum. Methods Phys. Res. B 2013, 317, 457–462. [Google Scholar] [CrossRef]
- Rosenbusch, M.; Wada, M.; Chen, S.; Takamine, A.; Iimura, S.; Hou, D.; Xian, W.; Yan, S.; Schury, P.; Hirayama, Y.; et al. The new MRTOF mass spectrograph following the ZeroDegree spectrometer at RIKEN’s RIBF facility. Nucl. Instrum. Methods Phys. Res. A 2023, 1047, 167824. [Google Scholar] [CrossRef]
- Kuzminchuk-Feuerstein, N.; Fabian, B.; Diwisch, M.; Plaß, W.R.; Geissel, H.; San Andrés, S.A.; Dickel, T.; Knöbel, R.; Scheidenberger, C.; Sun, B.; et al. Efficiency and rate capability studies of the time-of-flight detector for isochronous mass measurements of stored short-lived nuclei with the FRS-ESR facility. Nucl. Instrum. Meth. Phys. Res. A 2016, 821, 160–168. [Google Scholar] [CrossRef]
- Diwisch, M.; Plaß, W.R.; Geissel, H.; Knöbel, R.; Kuzminchuk-Feuerstein, N.; San Andrés, S.A.; Dickel, T.; Scheidenberger, C.; Weick, H. Design of a new time-of-flight detector for isochronous mass spectrometry in the collector ring at FAIR. Phys. Scr. 2015, T166, 014058. [Google Scholar] [CrossRef]
- Available online: https://www.gsi.de/ (accessed on 10 October 2024).
- Mei, B.; Tu, X.; Wang, M.; Xu, H.; Mao, R.; Hu, Z.; Ma, X.; Yuan, Y.; Zhang, X.; Geng, P.; et al. A high performance Time-of-Flight detector applied to isochronous mass measurement at CSRe. Nucl. Instrum. Methods Phys. Res. Sect. A 2010, 624, 109. [Google Scholar] [CrossRef]
- Zhang, W.; Tu, X.L.; Wang, M.; Zhang, Y.H.; Xu, H.S.; Litvinov, Y.A.; Blaum, K.; Chen, R.J.; Chen, X.C.; Fu, C.Y.; et al. Time-of-flight detectors with improved timing performance for isochronous mass measurements at the CSRe. Nucl. Instrum. Methods Phys. Res. Sect. A 2014, 756, 1. [Google Scholar] [CrossRef]
- Available online: http://english.imp.cas.cn/ (accessed on 10 October 2024).
- Suzuki, S.; Ozawa, A.; Kamioka, D.; Abe, Y.; Amano, M.; Arakawa, H.; Ge, Z.; Hiraishi, K.; Ichikawa, Y.; Inomata, K.; et al. Efficiency and timing performance of time-of-flight detector utilizing thin foils and crossed static electric and magnetic fields for mass measurements with Rare-RI Ring facility. Nucl. Instrum. Methods A 2020, 965, 163807. [Google Scholar] [CrossRef]
- Suzuki1, S.; Ozawa, A.; Moriguchi, T.; Amano, M.; Kamioka, D.; Ichikawa, Y.; Tajiri, Y.; Hiraishi, K.; Matsumoto, T.; Nagae, D.; et al. In INPC2016: Performance of Time-Of-Flight Detector and Demonstration of Completely New Position Detector for Mass Measurements with the Rare-RI Ring. Proc. Sci. 2017, 281, 111. [Google Scholar]
- Nagae, D.; Abe, Y.; Okada, S.; Ozawa, A.; Yamaguchi, T.; Suzuki, H.; Moriguchi, T.; Ishibashi, Y.; Fukuoka, S.; Nishikiori, R.; et al. Time-of-flight detector applied to mass measurements in Rare-RI Ring. Nucl. Instrum. Methods Phys. Res. Sect. B 2013, 317, 640–643. [Google Scholar] [CrossRef]
- Ge, Z.; Naimi, S.; Nagae, D.; Abe, Y.; Omika, S.; Uesaka, T.; Suzaki, F.; Li, H.; Yamaguchi, Y.; Wakasugi, M.; et al. Development of Mirror-type MCP Detectors for Mass Measurements at the Rare-RI Ring. JPS Conf. Proc. 2021, 35, 011023. [Google Scholar] [CrossRef]
- Nagae, D.; Abe, Y.; Okada, S.; Omika, S.; Wakayama, K.; Hosoi, S.; Suzuki, S.; Moriguchi, T.; Amano, M.; Kamioka, D.; et al. Development and operation of an electrostatic time-of-flight detector for the Rare RI storage Ring. Nucl. Instrum. Methods Phys. Res. Sect. A 2021, 986, 164713. [Google Scholar] [CrossRef]
- Available online: http://www.riken.jp/en/ (accessed on 20 June 2024).
- Matoš, M.; Estradé, A.; Schatz, H.; Bazin, D.; Famiano, M.; Gade, A.; George, S.; Lynch, W.G.; Meisel, Z.; Portillo, M.; et al. Time-of-flight mass measurements of exotic nuclei. Nucl. Instr. Meth. Phys. Res. A 2012, 696, 171–179. [Google Scholar] [CrossRef]
- Ge, Z.; Naimi, S.; Nagae, D.; Abe, Y.; Uesaka, T.; Yamaguchi, T.; Suzaki, F.; Yamaguchi, Y.; Wakasugi, M.; Omika, S.; et al. Simulation and design of a large area position sensitive TOF MCP detector at the Rare RI Ring. RIKEN Accel. Prog. Rep. 2017, 50, 187. Available online: https://www.nishina.riken.jp/researcher/APR/APR050/pdf/187.pdf (accessed on 20 June 2024).
- Ge, Z.; Uesaka, T.; Naimi, S.; Nagae, D.; Abe, Y.; Omika, S.; Suzaki, F.; Yamaguchi, T.; Yamaguchi, Y.; Wakusugi, M.; et al. Scheme of high-resolution identification and selection of secondary ions for mass measurements with the Rare-RI Ring. Hyperfine Interact. 2019, 240, 92. [Google Scholar] [CrossRef]
- Ge, Z.; Li, H.F.; Uesaka, T.; Naimi, S.; Nagae, D.; Abe, Y.; Omika, S.; Suzaki, F.; Yamaguchi, Y.; Wakasugi, M.; et al. Development of a large-area timing and position-sensitive foil-MCP detector for mass measurements at the Rare-RI Ring in RIKEN. arXiv 2021, arXiv:2106.08264v3. [Google Scholar]
- Geissel, H.; Franczak, B.; Haettner, E.; Ge, Z.; Dickel, T.; Kuzminchuk-Feuerstein, N.; Litvinov, S.; Litvinov, Y.A.; Patyk, Z.; Plaß, W.R.; et al. Novel isochronous features for FRS-ESR experiments with stored exotic projectile fragments. Nucl. Instr. Meth. Phys. Res. B 2023, 541, 305–309. [Google Scholar] [CrossRef]
- Liu, J.H.; Ge, Z.; Wang, Q.; Wang, G.; Sheng, L.; Ge, W.W.; Xu, X.; Shuai, P.; Zeng, Q.; Wu, B. Electrostatic-lenses position-sensitive TOF MCP detector for beam diagnostics and new scheme for mass measurements at HIAF. Nucl. Sci. Tech. 2019, 30, 152. [Google Scholar] [CrossRef]
- Rehm, K.E.; Wolfs, F.L.H. A focal plane detector for reactions with medium weight projectiles. Nucl. Instr. Meth. A 1988, 273, 262. [Google Scholar] [CrossRef]
- Breskin, A.; Chechik, R.; Fraenkel, Z.; Jacobs, P.; Tserruya, I.; Zwang, N. Low-pressure multisteo detector for very low energy heavy ions. Nucl. Instr. Meth. 1984, 221, 363. [Google Scholar] [CrossRef]
- Kumagai, H.; Ozawa, A.; Fukuda, N.; Sümmerer, K.; Tanihata, I. Delay-line PPAC for high-energy light ions. Nucl. Instrum. Meth. A 2001, 470, 562–570. [Google Scholar] [CrossRef]
- Kumagai, H.; Ohnishi, T.; Fukuda, N.; Takeda, H.; Kameda, D.; Inabe, N.; Yoshida, K.; Kubo, T. Development of Parallel Plate Avalanche Counter (PPAC) for BigRIPS fragment separator. Nucl. Instr. Meth. Phys. Res. B 2013, 317, 717–727. [Google Scholar] [CrossRef]
- Charpak, G.; Sauli, F. Multiwire Proportional Chambers and Drift Chambers. Nucl. Instrum. Methods 1979, 162, 405. [Google Scholar] [CrossRef]
- Hlinka, V.; Ivanov, M.; Janik, R.; Sitar, B.; Strmen, P.; Szarka, I.; Baumann, T.; Geissel, H.; Schwab, W. Time projection chambers for tracking and identification of radioactive beams. Nucl. Instrum. Methods Phys. Res. Sect. A 1998, 419, 503–510. [Google Scholar] [CrossRef]
- Goldstone, P.D.; Malmin, R.E.; Hopkins, F.; Paul, P. Development of thin-film plastic scintillator detectors for use in in-beam fission studies. Nucl. Instr. Meth. 1974, 130, 353. [Google Scholar] [CrossRef]
- Gabor, G.; Schimmerling, W.; Greiner, D.; Bleser, F.; Lindstrom, P. High resolution spectrometry for relativistic heavy ions. Nucl. Instr. Meth. 1975, 130, 65. [Google Scholar] [CrossRef]
- Pollacco, E.C.; Jacmart, J.C.; Blumenfeld, Y.; Chomaz, P.; Frascaria, N.; Garron, J.P.; Roynette, J.C. A compact gridless channel plate detector for time-of-flight measurements. Nucl. Instr. Meth. 1984, 225, 51. [Google Scholar] [CrossRef]
- Culhane, J.L. Position sensitive detectors in X-ray astronomy. Nucl. Instr. Meth. 1991, 310, 1. [Google Scholar] [CrossRef]
- Wiza, J.L. Microchannel Plate Detectors. Nucl. Instr. Meth. Phys. Res. Sect. 1979, 162, 587–601. [Google Scholar] [CrossRef]
- Starzecki, W.; Stefanini, A.M.; Lunardi, S.; Signorini, C. A compact time-zero detector for mass identification of heavy ions. Nucl. Instr. Meth. 1982, 193, 499–505. [Google Scholar] [CrossRef]
- Kosev, K.; Nankov, N.; Friedrich, M.; Grosse, E.; Hartmann, A.; Heidel, K.; Junghans, A.R.; Schilling, K.D.; Schwengner, R.; Sobiella, M.; et al. A high-resolution time-of-flight spectrometer with tracking capabilities for fission fragments and beams of exotic nuclei. Nucl. Instr. Meth. Phys. Res. A 2008, 594, 178–183. [Google Scholar] [CrossRef]
- Arnold, C.W.; Tovesson, F.; Meierbachtol, K.; Bredeweg, T.; Jandel, M.; Jorgenson, H.J.; Laptev, A.; Rusev, G.; Shields, D.W.; White, M.; et al. Development of position-sensitive time-of-flight spectrometer for fission fragment research. Nucl. Instr. Meth. Phys. Res. A 2014, 764, 53–58. [Google Scholar] [CrossRef]
- Morimoto, K.; Mayama, K.; Kaji, D.; Tokanai, F. Development of a large area TOF detector for super-heavy element research. RIKEN Accel. Prog. Rep. 2013, 46, 191. [Google Scholar]
- Ishizawa, S.; Morimoto, K.; Kaji, D.; Tanaka, T.; Tokanai, F. Improvement of the detection efficiency of a time-of-flight detector for superheavy element search. Nucl. Instr. Meth. Phys. Res. A 2020, 960, 163614. [Google Scholar] [CrossRef]
- Laitinen, M.; Rossi, M.; Julin, J.; Sajavaara, T. Secondary electron flight times and tracks in the carbon foil time pick-up detector. Nucl. Instrum. Methods Phys. Res. B 2014, 336, 55–62. [Google Scholar] [CrossRef]
- Steinbach, T.K.; Vadas, J.; Schmidt, J.; Haycraft, C.; Hudan, S.; Desouza, R.T.; Baby, L.T.; Kuvin, S.A.; Wiedenhöver, I.; Umar, A.S.; et al. Sub-barrier enhancement of fusion as compared to a microscopic method in 18O + 12C. Phys. Rev. C 2014, 90, 041603(R). [Google Scholar] [CrossRef]
- Singh, V.; Vadas, J.; Steinbach, T.K.; Wiggins, B.B.; Hudan, S.; de Souza, R.T.; Lin, Z.; Horowitz, C.J.; Baby, L.T.; Kuvin, S.A.; et al. Fusion enhancement at near and sub-barrier energies in 19O + 12C. Phys. Lett. B 2017, 765, 99–103. [Google Scholar] [CrossRef]
- Eliseev, S.; Blaum, K.; Block, M.; Dörr, A.; Droese, C.; Eronen, T.; Goncharov, M.; Höcker, M.; Ketter, J.; Ramirez, E.M.; et al. A phase-imaging technique for cyclotron-frequency measurements. Appl. Phys. B 2014, 114, 107–128. [Google Scholar] [CrossRef]
- Eliseev, S.; Blaum, K.; Block, M.; Droese, C.; Goncharov, M.; Minaya Ramirez, E.; Nesterenko, D.A.; Novikov, Y.N.; Schweikhard, L. Phase-imaging ion-cyclotron-resonance measurements for short-lived nuclides. Phys. Rev. Lett. 2013, 110, 082501. [Google Scholar] [CrossRef] [PubMed]
- Nesterenko, D.A.; Eronen, T.; Kankainen, A.; Canete, L.; Jokinen, A.; Moore, I.D.; Penttilä, H.; Rinta-Antila, S.; de Roubin, A.; Vilén, M. Phase-Imaging Ion-Cyclotron-Resonance technique at the JYFLTRAP double Penning trap mass spectrometer. Eur. Phys. J. A 2018, 54, 154. [Google Scholar] [CrossRef]
- Nesterenko, D.A.; Eronen, T.; Ge, Z.; Kankainen, A.; Vilen, M. Study of radial motion phase advance during motion excitations in a Penning trap and accuracy of JYFLTRAP mass spectrometer. Eur. Phys. J. A 2021, 57, 302. [Google Scholar] [CrossRef]
- Niwase, T.; Wada, M.; Schury, P.; Haba, H.; Ishizawa, S.; Ito, Y.; Kaji, D.; Kimura, S.; Miyatake, H.; Morimoto, K.; et al. Development of an ‘‘alpha-TOF’’ detector for correlated measurement of atomic masses and decay properties. Nucl. Instrum. Meth. Phys. Res. A 2020, 953, 163198. [Google Scholar] [CrossRef]
- Niwase, T.; Xian, W.; Wada, M.; Rosenbusch, M.; Chen, S.; Takamine, A.; Liu, J.; Iimura, S.; Hou, D.; Yan, S.; et al. Development of a beta-TOF detector: An enhancement of the alpha-TOF detector for use with beta-decaying nuclides. Prog. Theor. Exp. Phys. 2023, 2023, 031H01. [Google Scholar] [CrossRef]
- Tremsin, A.S.; Vallerga, J.V.; Siegmund, O.H.W. Overview of spatial and timing resolution of event counting detectors with Microchannel Plates. Instrum. Methods Phys. Res. A 2020, 949, 162768. [Google Scholar] [CrossRef]
- Fraser, G.W. X- and gamma-ray imaging using microchannel plates. Nucl. Instrum. Meth. Phys. Res. 1984, 221, 115. [Google Scholar] [CrossRef]
- Sobottka, S.E.; Williams, M.B. Delay line readout of microchannel plates. IEEE Trans. Nucl. Sci. 1988, 35, 348. Available online: https://ieeexplore.ieee.org/abstract/document/12740 (accessed on 10 June 2024). [CrossRef]
- Hong, R.; Leredde, A.; Bagdasarova, Y.; Fléchard, X.; Garcia, A.; Müller, P.; Knecht, A.; Liénard, E.; Kossin, M.; Sternberg, M.G.; et al. High accuracy position response calibration method for a micro-channel plate ion detector, Nucl. Instrum. Meth. A 2016, 835, 42–50. [Google Scholar] [CrossRef]
- Siegmund, O.; Tremsin, A.; Vallerga, J.; McPhate, J. Microchannel plate cross-strip detectors with high spatial and temporal resolution. Nucl. Instrum. Meth. A 2009, 610, 118. [Google Scholar] [CrossRef] [PubMed]
- de Souza, R.T.; Gosser, Z.Q.; Hudan, S. Using induced signals to sense position from a microchannel plate detector. Rev. Sci. Instrum. 2012, 83, 053305. [Google Scholar] [CrossRef]
- de Souza, R.T.; Wiggins, B.B.; Siwal, D. Sensing an electron cloud emanating from a microchannel plate stack. In Proceedings of the 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), San Diego, CA, USA, 31 October–7 November 2015; p. 4018747. [Google Scholar] [CrossRef]
- Lampton, M.; Carlson, C.W. Low-distortion resistive anodes for two-dimensional position-sensitive MCP systems. Rev. Sci. Instrum. 1979, 50, 1093. [Google Scholar] [CrossRef]
- de Souza, R.T.; Wiggins, B.B.; Siwal, D. Sensing an electron cloud emanating from a microchannel plate stack. Rev. Sci. Instrum. 2015, 86, 083303. [Google Scholar] [CrossRef]
- Siwal, D.; Wiggins, B.B.; de Souza, R.T. Using pulse shape analysis to improve the position resolution of a resistive anode microchannel plate detector. Nucl. Instrum. Meth. A 2015, 804, 144. [Google Scholar] [CrossRef]
- Tremsin, A.S.; McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W.; Feller, W.B.; Lehmann, E.; Butler, L.G.; Dawson, M. High-resolution neutron microtomography with noiseless neutron counting detector. Nucl. Instrum. Meth. A 2011, 652, 400. [Google Scholar] [CrossRef]
- James, A.N.; Morrison, T.P.; Ying, K.L.; Connell, K.A.; Price, H.G.; Simpson, J. Microsecond mass separation of heavy compound nucleus residues using the Daresbury recoil separator. Nucl. Instr. Meth. A 1988, 267, 144. [Google Scholar] [CrossRef]
- Shapira, D.; Lewis, T.A.; Hulett, L.D.; Ciao, Z. Factors affecting the performance of detectors that use secondary electron emission from a thin foil to determine ion impact position. Nucl. Instr. Meth. A 2000, 449, 396–407. [Google Scholar] [CrossRef]
- Odland, O.H.; Mittig, W.; Lepine-Szily, A.; Fremont, G.; Chartrier, M.; MacCormick, M.; Casandjian, J.M. A fast position sensitive microchannel plate detector for ray-tracing of charged particles. Nucl. Instr. Meth. A 1996, 378, 149. [Google Scholar] [CrossRef]
- Rogers, A.M.; Sanetullaev, A.; Lynch, W.G.; Tsang, M.B.; Lee, J.; Bazin, D.; Coupl, D.; Henzl, V.; Henzlova, D.; Kilburn, M.; et al. Tracking rare-isotope beams with microchannel plates. Nucl. Instrum. Methods Phys. Res. Sect. A 2015, 795, 325–334. [Google Scholar] [CrossRef]
- Bowman, J.D.; Heffner, R.H. A novel zero time detector for heavy ion spectroscopy. Nucl. Instrum. Meth. Phys. Res. 1978, 148, 503. [Google Scholar] [CrossRef]
- Kraus, R.H., Jr.; Vieira, D.J.; Wollnik, H.; Wouters, J.M. Large-area fast-timing detectors developed for the TOFI spectrometer. Nucl. Instrum. Meth. A 1988, 264, 327. [Google Scholar] [CrossRef]
- Odenweller, T.; Noll, H.; Sapotta, K.; Renfordt, R.E.; Bass, R. A gridless position sensitive time-zero detector for heavy ions. Nucl. Instrum. Meth. Phys. Res. 1982, 198, 263. [Google Scholar] [CrossRef]
- Steinbach, T.K.; Rudolph, M.J.; Gosser, Z.Q.; Brown, K.; Floyd, B.; Hudan, S.; Desouza, R.T.; Liang, J.F.; Shapira, D.; Famiano, M. Measuring the fusion cross-section of light nuclei with low-intensity beams. Nucl. Instrum. Meth. A 2014, 743, 5–13. [Google Scholar] [CrossRef]
- Wiggins, B.B.; Singh, V.; Vadas, J.; Huston, J.; Steinbach, T.K.; Hudan, S.; de Souza, R.T. Development of a compact E×B microchannel plate detector for beam imaging. Nucl. Instrum. Methods Phys. Res. Sect. A 2017, 866, 202–206. [Google Scholar] [CrossRef]
- Ge, Z. Time and Position-sensitive Foil MCP Detector for Mass Measurements at the Rare-RI Ring. Ph.D. Thesis, Saitama University, Saitama, Japan, 2018. [Google Scholar]
- Dahl, D.A. SIMION 3D. Available online: https://simion.com (accessed on 10 June 2024).
- Šaro, Š; Janik, R.; Hofmann, S.; Folger, H.; Heßberger, F.P.; Ninov, V.; Schött, H.J.; Kabachenko, A.P.; Popeko, A.G.; Yeremin, A.V. Large size foil-microchannel plate timing detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 1996, 381, 520. [Google Scholar] [CrossRef]
- Rothard, H.; Kroneberger, K.; Clouvas, A.; Veje, E.; Lorenzen, P.; Keller, N.; Kemmler, J.; Meckbach, W.; Groeneveld, K.O. Secondary electron yields from thin foils: A possible probe for the electronic stopping power of heavy ions. Phys. Rev. A 1990, 41, 2521. [Google Scholar] [CrossRef] [PubMed]
- Shima, K.; Ishii, S.; Takahashi, T.; Sugai, I. Optimum thickness of carbon stripper foils in tandem accelerator in view of transmission and lifetime. Nucl. Instr. Meth. A 2001, 460, 233–238. [Google Scholar] [CrossRef]
- Ma, W.; Liechtenstein, V.K.; Szerypo, J.; Jung, D.; Hilzx, P.; Hegelich, B.M.; Maier, H.J.; Schreiber, J.; Habs, D. Preparation of selfsupporting diamond-like carbon nanofoils with thickness less than 5 nm for laser driven ion acceleration. Nucl. Instr. Meth. A 2011, 665, 53–56. [Google Scholar] [CrossRef]
- Liechtenstein, V.K.; Ivkova, T.M.; Olshanski, E.D.; Repnow, R.; Steier, P.; Kutschera, W.; Wallner, A.; von Hahn, R. Preparation and investigation of ultra-thin diamond-like carbon (DLC) foils reinforced with collodion. Nucl. Instr. Meth. A 2006, 561, 120–123. [Google Scholar] [CrossRef]
- Hasselkamp, D.; Rothard, H.; Groeneveld, K.O.; Kemmler, J.; Varga, P.; Winter, H. Particle Induced Electron Emission II; Springer: Berlin/Heidelberg, Germany, 2006; Volume 123. [Google Scholar]
- Drexler, C.G.; DuBois, R.D. Energy- and angle-differential yields of electron emission from thin carbon foils after fast proton impact. Phys. Rev. A 1996, 53, 1630. [Google Scholar] [CrossRef]
- Rothard, H.; Caraby, C.; Cassimi, A.; Gervais, B.; Grandin, J.P.; Jardin, P.; Jung, M.; Billebaud, A.; Chevallier, M.; Groeneveld, K.O.; et al. Target-thickness-dependent electron emission from carbon foils bombarded with swift highly charged heavy ions. Phys. Rev. A 1995, 51, 3066–3078. [Google Scholar] [CrossRef] [PubMed]
- Sternglass, E.J. Theory of secondary electron emission by high speed ions. Phys. Rev. 1957, 108, 1–12. [Google Scholar] [CrossRef]
- Koschar, P.; Kroneberger, K.; Clouvas, A.; Burkhard, M.; Meckbach, W.; Heil, O.; Kemmler, J.; Rothard, H.; Groeneveld, K.O.; Schramm, R.; et al. Secondary-electron yield as a probe of preequilibrium stopping power of heavy ions colliding with solids. Phys. Rev. A 1989, 40, 3632–3636. [Google Scholar] [CrossRef] [PubMed]
- Hasselkamp, D.; Hippler, S.; Scharmann, A. Ion-induced secondary electron spectra from clean metal surfaces. Nucl. Instr. Meth. Phys. Res. B 1987, 18, 561–565. [Google Scholar] [CrossRef]
- Rösler, M.; Brauer, W.; Devooght, J.; Dehaes, J.; Dubus, A.; Cailler, M.; Ganachaud, J.-P. Particle Induced Electron Emission I; Springer: Berlin/Heidelberg, Germany, 2006; Volume 122. [Google Scholar] [CrossRef]
- Jung, M.; Rothard, H.; Gervais, B.; Grandin, J.P.; Clouvas, A.; Wünsch, R. Transport of electrons induced by highly charged Ni (74 MeV/u) and Cu (9.6 MeV/u) ions in carbon: A study of target-thickness-dependent electron yields. Phys. Rev. A 1996, 54, 4153–4161. [Google Scholar] [CrossRef]
- Clouvas, A.; Rothard, H.; Burkhard, M.; Kroneberger, K.; Biedermann, C.; Kemmler, J.; Groeneveld, K.O.; Kirsch, R.; Misaelides, P.; Katsanos, A. Secondary electron emission from thin foils under fast-ion bombardment. Phys. Rev. B 1989, 39, 6316–6320. [Google Scholar] [CrossRef] [PubMed]
- Galanti, M.; Gott, R.; Renaud, J.F. A High Resolution, High Sensitivity Channel Plate Image Intensifier for Use in Particle Spectrographs. Rev. Sci. Instrum. 1971, 42, 1818–1822. [Google Scholar] [CrossRef]
- Agranovich, V.M.; Daukeev, D.K.; Konobeev, Y.V.; Lebedev, S.Y. Study of the energy spectrum of secondary electrons arising from passage of α particles and fission fragmenst trough thin foils. Soviet. Phys. JETP 1970, 30, 220. [Google Scholar]
- Shapira, D.; Lewis, T.A.; Hulett, L.D. A fast and accurate position-sensitive timing detector based on secondary electron emission. Nucl. Instrum. Meth. A 2000, 454, 409–420. [Google Scholar] [CrossRef]
- Ge, Z. Design and test of high resolution beam-line and mass measurements of N=Z nuclei. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2019. [Google Scholar]
- Ozawa, A.; Uesaka, T.; Wakasugi, M. The Rare-RI Ring Collaboration, The rare-RI ring. Prog. Theor. Exp. Phy. 2012, 2012, 03C009. [Google Scholar] [CrossRef]
- RoentDek GmbH. Available online: http://www.roentdek.com (accessed on 15 July 2024).
- Available online: https://www.bmtdynamics.org/cosy/ (accessed on 10 June 2024).
- Available online: https://web-docs.gsi.de/~weick/mocadi/ (accessed on 10 June 2024).
- Available online: http://www.kaizuworks.co.jp (accessed on 10 June 2021).
- Available online: http://www.hamamatsu.com/jp/en/index.html (accessed on 10 June 2024).
- Hirao, Y.O.H.Y.; Ogawa, H.; Yamada, S.; Sato, Y.; Yamada, T.; Sato, K.; Itano, A.; Kanazawa, M.; Noda, K.; Kawachi, K.; et al. Heavy ion synchrotron for medical use—HIMAC project at NIRS-Japan. Nucl. Phys. A 1992, 538, 541–550. [Google Scholar] [CrossRef]
- Kanazawa, M.; Kitagawa, A.; Kouda, S.; Nishio, T.; Torikoshi, M.; Noda, K.; Murakami, T.; Sato, S.; Suda, M.; Tomitani, T.; et al. Present status of secondary beam courses in HIMAC. Nucl. Phys. A 2004, 746, 393–396. [Google Scholar] [CrossRef]
- Yano, Y. The RIKEN RI Beam Factory Project: A status report. Nucl. Instr. Meth. Phys. Res. B 2007, 261, 1009. [Google Scholar] [CrossRef]
- Yang, J.C.; Xia, J.W.; Xiao, G.Q.; Xu, H.S.; Zhao, H.W.; Zhou, X.H.; Ma, X.W.; He, Y.; Ma, L.Z.; Gao, D.Q.; et al. High Intensity heavy ion Accelerator Facility (HIAF) in China. Nucl. Instr. Meth. Phys. Res. A 2013, 317, 263–265. [Google Scholar] [CrossRef]
- Chen, X.; Shen, L.N.; Yang, J.C.; Zhang, X.; Zhang, J.; Mao, L.; Wu, B.; Zhao, H.; Ruan, S.; Wang, J.; et al. Separation performance research of superconducting fragment separator. High Power Laser Part. Beams 2017, 29, 056008. [Google Scholar] [CrossRef]
- Geissel, H.; Litvinov, Y.A. Precision experiments with relativistic exotic nuclei at GSI. J. Phys. G Nucl. Part. Phys. 2005, 31, S1779. [Google Scholar] [CrossRef]
- Xing, Y.M.; Wang, M.; Zhang, Y.H.; Shuai, P.; Xu, X.; Chen, R.J.; Yan, X.L.; Tu, X.L.; Zhang, W.; Fu, C.Y.; et al. First isochronous mass measurements with two time-of-flight detectors at CSRe. Phys. Scrip. 2015, T166, 014010. [Google Scholar] [CrossRef]
- Walker, P.M. Technical Proposal for the ILIMA Project. 2005. Available online: https://nustar-wiki.gsi.de/foswiki/pub/ILIMA/TechnicalProposal/ILIMA_TP_20051215.pdf (accessed on 10 June 2021).
- Ge, Z.; et al. To Be Submitted to. https://arxiv.org.
Distance Between C-Foil and MCP | 1 mm | 2 mm | 3 mm | 4 mm |
---|---|---|---|---|
Timing resolving power (, ps) | 16 | 20 | 16 | 16 |
X-resolution (FWHM, mm) | 0.15 | 0.40 | 0.38 | 0.69 |
Y-resolution (FWHM, mm) | 7.68 | 6.86 | 7.00 | 6.43 |
Electric Field (Volt) | 1000 | 1000 | 2000 | 1000 | 2000 | 1000 | 1000 | 1000 |
---|---|---|---|---|---|---|---|---|
Relative Initial Magnetic Field (Gauss) | 0 | 212 | 212 | 864 | 864 | 529 | 2115 | 9520 |
Timing resolution (, ps) | 400 | 490 | 233 | 476 | 237 | 410 | 441 | 466 |
X-resolution (FWHM, mm) | 9 | 0.23 | 0.29 | 0.06 | 0.08 | 0.09 | 0.037 | 0.006 |
Y-resolution (FWHM, mm) | 9 | 0.25 | 0.30 | 0.06 | 0.09 | 0.09 | 0.040 | 0.007 |
Ion Detection Mode | Electron Detection Mode | |
---|---|---|
MCP front | −2400 V | 0 V |
MCP back | 0 V | +2400 V |
Anode holder | 0 V to +250 V | +2400 V to +2650 V |
Reference wires | +250 V | +2650 V |
Signal wires | +286 V | +2686 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, Z. Overview of High-Performance Timing and Position-Sensitive MCP Detectors Utilizing Secondary Electron Emission for Mass Measurements of Exotic Nuclei at Nuclear Physics Facilities. Sensors 2024, 24, 7261. https://doi.org/10.3390/s24227261
Ge Z. Overview of High-Performance Timing and Position-Sensitive MCP Detectors Utilizing Secondary Electron Emission for Mass Measurements of Exotic Nuclei at Nuclear Physics Facilities. Sensors. 2024; 24(22):7261. https://doi.org/10.3390/s24227261
Chicago/Turabian StyleGe, Zhuang. 2024. "Overview of High-Performance Timing and Position-Sensitive MCP Detectors Utilizing Secondary Electron Emission for Mass Measurements of Exotic Nuclei at Nuclear Physics Facilities" Sensors 24, no. 22: 7261. https://doi.org/10.3390/s24227261
APA StyleGe, Z. (2024). Overview of High-Performance Timing and Position-Sensitive MCP Detectors Utilizing Secondary Electron Emission for Mass Measurements of Exotic Nuclei at Nuclear Physics Facilities. Sensors, 24(22), 7261. https://doi.org/10.3390/s24227261