The Use of Wearable Sensors and Machine Learning Methods to Estimate Biomechanical Characteristics During Standing Posture or Locomotion: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
- Only peer-reviewed, web-available journal articles.
- Articles published in the period from January 2010 to February 2024.
- Studies that use wearable sensor data as inputs for model prediction.
- Articles using machine learning to estimate or predict CoP, CoM, or a variant of these two balance-related biomechanical characteristics.
- Reviews, conference papers, magazines, or book chapter papers.
- Studies in languages other than English.
- Publications that studied robotic, exoskeleton-based systems, or non-human subjects.
- Studies that used non-wearable sensors-based systems, such as cameras and radar to make predictions.
- Studies that used ML and wearable sensors solely to detect instability, falls, freezing of gait, or assess fall risk.
- Studies that used ML and wearable sensors to classify different postural behaviors or postural statuses.
- Studies that used ML and wearable sensors to estimate PT labels or clinical rating scales of balance performance.
- Studies that used ML and wearable sensors solely to predict joint angles, torques, and ground reaction forces (GRFs).
2.3. Data Extraction
2.4. Quality Assessment
3. Results
3.1. Study Design and Methodological Quality
3.2. Outcome Measurements
3.3. Machine Learning Models
3.4. Wearable Sensor Properties
3.5. Testing Activity
3.6. Predicted Biomechanical Characteristic of Posture
4. Discussion
4.1. Participant Characteristics
4.2. Testing Parameters and Sensor Properties
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Hu, X.; Rivera-Lillo, G. Editorial: The effect of musculoskeletal conditions on balance control. Front. Rehabil. Sci. 2023, 4, 1288322. [Google Scholar] [CrossRef] [PubMed]
- Tyson, S.F.; Hanley, M.; Chillala, J.; Selley, A.; Tallis, R.C. Balance disability after stroke. Phys. Ther. 2006, 86, 30–38. [Google Scholar] [CrossRef]
- Lamptey, R.N.L.; Chaulagain, B.; Trivedi, R.; Gothwal, A.; Layek, B.; Singh, J. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. Int. J. Mol. Sci. 2022, 23, 1851. [Google Scholar] [CrossRef]
- Osoba, M.Y.; Rao, A.K.; Agrawal, S.K.; Lalwani, A.K. Balance and gait in the elderly: A contemporary review. Laryngoscope Investig. Otolaryngol. 2019, 4, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Gerson, L.W.; Jarjoura, D.; McCORD, G. Risk of imbalance in elderly people with impaired hearing or vision. Age Ageing 1989, 18, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Sudarsky, L. Gait disorders: Prevalence, morbidity, and etiology. Adv. Neurol. 2001, 87, 111–117. [Google Scholar] [PubMed]
- Lohman, M.C.; Sonnega, A.J.; Nicklett, E.J.; Estenson, L.; Leggett, A.N. Comparing Estimates of Fall-Related Mortality Incidence Among Older Adults in the United States. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 1468–1474. [Google Scholar] [CrossRef]
- Wesselhoff, S.; Hanke, T.A.; Evans, C.C. Community mobility after stroke: A systematic review. Top. Stroke Rehabil. 2018, 25, 224–238. [Google Scholar] [CrossRef]
- Mahlknecht, P.; Kiechl, S.; Bloem, B.R.; Willeit, J.; Scherfler, C.; Gasperi, A.; Rungger, G.; Poewe, W.; Seppi, K. Prevalence and burden of gait disorders in elderly men and women aged 60–97 years: A population-based study. PLoS ONE 2013, 8, e69627. [Google Scholar] [CrossRef]
- Prakash, C.; Kumar, R.; Mittal, N. Recent developments in human gait research: Parameters, approaches, applications, machine learning techniques, datasets and challenges. Artif. Intell. Rev. 2018, 49, 1–40. [Google Scholar] [CrossRef]
- Das, R.; Paul, S.; Mourya, G.K.; Kumar, N.; Hussain, M. Recent Trends and Practices Toward Assessment and Rehabilitation of Neurodegenerative Disorders: Insights from Human Gait. Front. Neurosci. 2022, 16, 859298. [Google Scholar] [CrossRef]
- Ghislieri, M.; Gastaldi, L.; Pastorelli, S.; Tadano, S.; Agostini, V. Wearable Inertial Sensors to Assess Standing Balance: A Systematic Review. Sensors 2019, 19, 4075. [Google Scholar] [CrossRef]
- Labrozzi, G.C.; Warner, H.; Makowski, N.S.; Audu, M.L.; Triolo, R.J. Center of Mass Estimation for Impaired Gait Assessment Using Inertial Measurement Units. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 12–22. [Google Scholar] [CrossRef]
- Quijoux, F.; Nicolaï, A.; Chairi, I.; Bargiotas, I.; Ricard, D.; Yelnik, A.; Oudre, L.; Bertin-Hugault, F.; Vidal, P.; Vayatis, N.; et al. A review of center of pressure (COP) variables to quantify standing balance in elderly people: Algorithms and open-access code. Physiol. Rep. 2021, 9, e15067. [Google Scholar] [CrossRef]
- Roeing, K.L.; Hsieh, K.L.; Sosnoff, J.J. A systematic review of balance and fall risk assessments with mobile phone technology. Arch. Gerontol. Geriatr. 2017, 73, 222–226. [Google Scholar] [CrossRef]
- Sun, R.; Sosnoff, J.J. Novel sensing technology in fall risk assessment in older adults: A systematic review. BMC Geriatr. 2018, 18, 14. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Lattanzi, E.; Freschi, V. Evaluation of human standing balance using wearable inertial sensors: A machine learning approach. Eng. Appl. Artif. Intell. 2020, 94, 103812. [Google Scholar] [CrossRef]
- Weissler, E.H.; Naumann, T.; Andersson, T.; Ranganath, R.; Elemento, O.; Luo, Y.; Freitag, D.F.; Benoit, J.; Hughes, M.C.; Khan, F.; et al. The role of machine learning in clinical research: Transforming the future of evidence generation. Trials 2021, 22, 537. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Tan, T.; Strout, Z.A.; Cheung, R.T.; Shull, P.B. Strike index estimation using a convolutional neural network with a single, shoe-mounted inertial sensor. J. Biomech. 2022, 139, 111145. [Google Scholar] [CrossRef]
- Jaccard, P. Etude de la distribution florale dans une portion des Alpes et du Jura. Bull. Soc. Vaudoise Sci. Nat. 1901, 37, 547–579. [Google Scholar]
- Downs, S.H.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef]
- Bellini, V.; Coccolini, F.; Forfori, F.; Bignami, E. The artificial intelligence evidence-based medicine pyramid. World J. Crit. Care Med. 2023, 12, 89–91. [Google Scholar] [CrossRef]
- Andò, B.; Baglio, S.; Graziani, S.; Marletta, V.; Dibilio, V.; Mostile, G.; Zappia, M. A Comparison among Different Strategies to Detect Potential Unstable Behaviors in Postural Sway. Sensors 2022, 22, 7106. [Google Scholar] [CrossRef]
- Mazumder, O.; Kundu, A.S.; Lenka, P.K.; Bhaumik, S. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton. Gait Posture 2016, 50, 53–59. [Google Scholar] [CrossRef]
- Andò, B.; Baglio, S.; Marletta, V.; Marrella, M.; Rajan, S.; Dibilio, V.; Mostile, G.; Zappia, M. A Neuro-Fuzzy-Based Sensing Approach for the Classification of Emulated Postural Instability. IEEE Sens. J. 2023, 23, 23866–23874. [Google Scholar] [CrossRef]
- Sabatini, A.M.; Mannini, A. Ambulatory Assessment of Instantaneous Velocity during Walking Using Inertial Sensor Measurements. Sensors 2016, 16, 2206. [Google Scholar] [CrossRef]
- Abujrida, H.; Agu, E.; Pahlavan, K. Machine learning-based motor assessment of Parkinson’s disease using postural sway, gait and lifestyle features on crowdsourced smartphone data. Biomed. Phys. Eng. Express 2020, 6, 035005. [Google Scholar] [CrossRef]
- Adın, V.; Zhang, Y.; Andò, B.; Oelmann, B.; Bader, S. Tiny Machine Learning for Real-Time Postural Stability Analysis. In Proceedings of the 2023 IEEE Sensors Applications Symposium (SAS), Ottawa, ON, Canada, 18–20 July 2023; pp. 1–6. [Google Scholar]
- Barkallah, E.; Freulard, J.; Otis, M.J.D.; Ngomo, S.; Ayena, J.C.; Desrosiers, C. Wearable Devices for Classification of Inadequate Posture at Work Using Neural Networks. Sensors 2017, 17, 2003. [Google Scholar] [CrossRef]
- Lim, H.; Kim, B.; Park, S. Prediction of Lower Limb Kinetics and Kinematics during Walking by a Single IMU on the Lower Back Using Machine Learning. Sensors 2019, 20, 130. [Google Scholar] [CrossRef] [PubMed]
- Greene, B.R.; McManus, K.; Ader, L.G.M.; Caulfield, B. Unsupervised Assessment of Balance and Falls Risk Using a Smartphone and Machine Learning. Sensors 2021, 21, 4770. [Google Scholar] [CrossRef]
- Prado, A.; Kwei, S.K.; Vanegas-Arroyave, N.; Agrawal, S.K. Continuous Identification of Freezing of Gait in Parkinson’s Patients Using Artificial Neural Networks and Instrumented Shoes. IEEE Trans. Med. Robot. Bionics 2021, 3, 554–562. [Google Scholar] [CrossRef]
- Kamran, F.; Harrold, K.; Zwier, J.; Carender, W.; Bao, T.; Sienko, K.H.; Wiens, J. Automatically evaluating balance using machine learning and data from a single inertial measurement unit. J. Neuroeng. Rehabil. 2021, 18, 114. [Google Scholar] [CrossRef]
- Bao, T.; Klatt, B.N.; Whitney, S.L.; Sienko, K.H.; Wiens, J. Automatically Evaluating Balance: A Machine Learning Approach. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 179–186. [Google Scholar] [CrossRef]
- Palmerini, L.; Rocchi, L.; Mellone, S.; Valzania, F.; Chiari, L. Feature selection for accelerometer-based posture analysis in Parkinson’s disease. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Sotirakis, C.; Su, Z.; Brzezicki, M.A.; Conway, N.; Tarassenko, L.; FitzGerald, J.J.; Antoniades, C.A. Identification of motor progression in Parkinson’s disease using wearable sensors and machine learning. NPJ Park. Dis. 2023, 9, 142. [Google Scholar] [CrossRef]
- Li, T.-H.S.; Kuo, P.-H.; Chen, L.-H.; Hung, C.-C.; Luan, P.-C.; Hsu, H.-P.; Chang, C.-H.; Hsieh, Y.-T.; Lin, W.-H. Fuzzy Double Deep Q-Network-Based Gait Pattern Controller for Humanoid Robots. IEEE Trans. Fuzzy Syst. 2022, 30, 147–161. [Google Scholar] [CrossRef]
- Chalvatzaki, G.; Koutras, P.; Hadfield, J.; Papageorgiou, X.S.; Tzafestas, C.S.; Maragos, P. LSTM-based Network for Human Gait Stability Prediction in an Intelligent Robotic Rollator. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 4225–4232. [Google Scholar]
- Egan, S.; Brama, P.A.J.; Goulding, C.; McKeown, D.; Kearney, C.M.; McGrath, D. The Feasibility of Equine Field-Based Postural Sway Analysis Using a Single Inertial Sensor. Sensors 2021, 21, 1286. [Google Scholar] [CrossRef]
- Duong, T.T.; Uher, D.; Young, S.D.; Duong, T.; Sangco, M.; Cornett, K.; Montes, J.; Zanotto, D. Gaussian Process Regression for COP Trajectory Estimation in Healthy and Pathological Gait Using Instrumented Insoles. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021. [Google Scholar]
- Refai, M.I.M.; van Beijnum, B.-J.F.; Buurke, J.H.; Veltink, P.H. Portable Gait Lab: Instantaneous centre of mass velocity using three inertial measurement units. In Proceedings of the 2020 IEEE SENSORS, Rotterdam, The Netherlands, 25–28 October 2020; pp. 1–4. [Google Scholar]
- Pierleoni, P.; Belli, A.; Palma, L.; Paoletti, M.; Raggiunto, S.; Pinti, F. Postural stability evaluation using wearable wireless sensor. In Proceedings of the 2019 IEEE 23rd International Symposium on Consumer Technologies (ISCT), Ancona, Italy, 19–21 June 2019; pp. 256–260. [Google Scholar]
- Pinheiro, V.; Carmo, J.D.; Nascimento, F.d.O.; Miosso, C. System for the analysis of human balance based on accelerometers and support vector machines. Comput. Methods Programs Biomed. Updat. 2023, 4, 100123. [Google Scholar] [CrossRef]
- Yu, C.-H.; Yeh, C.-C.; Lu, Y.-F.; Lu, Y.-L.; Wang, T.-M.; Lin, F.Y.-S.; Lu, T.-W. Recurrent Neural Network Methods for Extracting Dynamic Balance Variables during Gait from a Single Inertial Measurement Unit. Sensors 2023, 23, 9040. [Google Scholar] [CrossRef] [PubMed]
- Duong, T.T.H.; Uher, D.; Young, S.D.; Farooquee, R.; Druffner, A.; Pasternak, A.; Kanner, C.; Fragala-Pinkham, M.; Montes, J.; Zanotto, D. Accurate COP Trajectory Estimation in Healthy and Pathological Gait Using Multimodal Instrumented Insoles and Deep Learning Models. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 4801–4811. [Google Scholar] [CrossRef]
- Wantanajittikul, K.; Wiboonsuntharangkoon, C.; Chuatrakoon, B.; Kongsawasdi, S. Application of Machine Learning to Predict Trajectory of the Center of Pressure (COP) Path of Postural Sway Using a Triaxial Inertial Sensor. Sci. World J. 2022, 2022, 9483665. [Google Scholar] [CrossRef]
- He, B.; Shi, P.; Li, X.; Fan, M.; Deng, Z.; Yu, H. A pelvic support weight rehabilitation system tracing the human center of mass height. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2022, 39, 175–184. [Google Scholar]
- Chebel, E.; Tunc, B. Deep neural network approach for estimating the three-dimensional human center of mass using joint angles. J. Biomech. 2021, 126, 110648. [Google Scholar] [CrossRef] [PubMed]
- Hnat, S.K.; Audu, M.L.; Triolo, R.J.; Quinn, R.D. Estimating Center of Mass Kinematics During Perturbed Human Standing Using Accelerometers. J. Appl. Biomech. 2021, 37, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Park, S. Estimation of Three-Dimensional Lower Limb Kinetics Data during Walking Using Machine Learning from a Single IMU Attached to the Sacrum. Sensors 2020, 20, 6277. [Google Scholar] [CrossRef]
- Wu, C.-C.; Chen, Y.-J.; Hsu, C.-S.; Wen, Y.-T.; Lee, Y.-J. Multiple Inertial Measurement Unit Combination and Location for Center of Pressure Prediction in Gait. Front. Bioeng. Biotechnol. 2020, 8, 566474. [Google Scholar] [CrossRef]
- Podobnik, J.; Kraljić, D.; Zadravec, M.; Munih, M. Centre of Pressure Estimation during Walking Using Only Inertial-Measurement Units and End-To-End Statistical Modelling. Sensors 2020, 20, 6136. [Google Scholar] [CrossRef]
- Choi, A.; Jung, H.; Mun, J.H. Single Inertial Sensor-Based Neural Networks to Estimate COM-COP Inclination Angle During Walking. Sensors 2019, 19, 2974. [Google Scholar] [CrossRef]
- Chen, V.C.; Chen, S.-W. Establishing the waist as the better location for attaching a single accelerometer to estimate center of pressure trajectories. Clin. Biomech. 2018, 60, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Nataraj, R.; Audu, M.L.; Triolo, R.J. Center of mass acceleration feedback control of standing balance by functional neuromuscular stimulation against external perterbations. J. IEEE Trans. Biomed. Eng. 2013, 60, 10–19. [Google Scholar] [CrossRef]
- Burns, P.B.; Rohrich, R.J.; Chung, K.C.M. The Levels of Evidence and Their Role in Evidence-Based Medicine. Plast. Reconstr. Surg. 2011, 128, 305–310. [Google Scholar] [CrossRef]
- Kriegeskorte, N.; Golan, T. Neural network models and deep learning. Curr. Biol. 2019, 29, R231–R236. [Google Scholar] [CrossRef] [PubMed]
- Boukhennoufa, I.; Zhai, X.; Utti, V.; Jackson, J.; McDonald-Maier, K.D. Wearable sensors and machine learning in post-stroke rehabilitation assessment: A systematic review. Biomed. Signal Process. Control 2022, 71, 103197. [Google Scholar] [CrossRef]
- Slemenšek, J.; Fister, I.; Geršak, J.; Bratina, B.; van Midden, V.M.; Pirtošek, Z.; Šafarič, R. Human Gait Activity Recognition Machine Learning Methods. Sensors 2023, 23, 745. [Google Scholar] [CrossRef]
- Chen, M.; Wang, H.; Yu, L.; Yeung, E.H.K.; Luo, J.; Tsui, K.-L.; Zhao, Y. A Systematic Review of Wearable Sensor-Based Technologies for Fall Risk Assessment in Older Adults. Sensors 2022, 22, 6752. [Google Scholar] [CrossRef]
- Howcroft, J.; Kofman, J.; Lemaire, E.D. Review of fall risk assessment in geriatric populations using inertial sensors. J. Neuroeng. Rehabil. 2013, 10, 91. [Google Scholar] [CrossRef]
- Jiao, Y.; Hart, R.; Reading, S.; Zhang, Y. Systematic review of automatic post-stroke gait classification systems. Gait Posture 2024, 109, 259–270. [Google Scholar] [CrossRef]
- Bhongade, A.; Gupta, R.; Gandhi, T.K. Machine Learning-Based Gait Characterization Using Single IMU Sensor. In Proceedings of the 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 4–5 November 2022; pp. 263–266. [Google Scholar]
- Rashidi, H.H.; Albahra, S.; Robertson, S.; Tran, N.K.; Hu, B. Common statistical concepts in the supervised Machine Learning arena. Front. Oncol. 2023, 13, 1130229. [Google Scholar] [CrossRef]
- Liu, M.M.; Herzog, W.; Savelberg, H.H. Dynamic muscle force predictions from EMG: An artificial neural network approach. J. Electromyogr. Kinesiol. 1999, 9, 391–400. [Google Scholar] [CrossRef] [PubMed]
Parameter | Search Query |
---|---|
Artificial intelligence algorithm | (“artificial intelligence” OR AI OR “machine learning” OR ML OR “long short-term memory” OR LSTM OR “artificial neural network” OR ANN OR “neural network” OR “support vector machine” OR SVM) AND |
Wearable sensor | (“wearable sensor” OR IMU OR “inertial measurement unit” OR accelerometer OR gyroscope OR magnetometer) AND |
Biomechanical characteristics | (“center of pressure” OR COP OR “center of mass” OR sway) |
First Author (Year) | Study Design | Level of Evidence | Downs & Black Scale Score | Participant Characteristics | Testing Condition | Data Collection Trial Duration | Estimated Mechanical Parameter | ML Method Used | Wearable Sensors Used and Locations |
---|---|---|---|---|---|---|---|---|---|
Yu, C. H. (2023) [46] | Internal Validation study | III | 21 | 26 healthy individuals, 13 subjects with 25.46 +/− 2.37 years of age and 13 subjects with 72.75 +/− 6.68 years of ages | Walking | UND | CoM-CoP inclination angle (IA) | 4 Types of Recurrent Neural Network (RNN) models: unidirectional-LSTM, bi-LSTM, uni-GRU, and bidirectional -GRU | 1 IMU; located on sacrum |
Duong, Ton T. H. (2023) [47] | Internal Validation study | III | 15 | 38 (13 healthy individuals and 25 with genetically determined neuromuscular conditions), 10.1–29.8 years | Walking | 6 min | CoP | Bidirectional-LSTM model and Gaussian Process Regression (GP) | 8 FSRs on the foot and 1 IMU located under the midfoot |
Labrozzi, Gabrielle (2023) [13] | Internal Validation study | III | 15 | 5 healthy individuals, 24–37 years | Walking and standing balance | UND | CoM | Bi-directional LSTM model | 12 IMUs; three located on the thoracic region, three on the mid-abdomen, one positioned anterolaterally on each thigh and shank, and one per foot |
Wantanajittikul, Kittichai (2022) [48] | Internal Validation study | III | 18 | 53 healthy individuals, an average of 46 years | Standing balance | 30 s | CoP | Least-square boosting (LSBoost), Bootstrap aggregation (Bagging), Support vector machine (SVM), Artificial neural network (ANN), and Gaussian process (GP) | 1 IMU; located on the lumbar region of the trunk |
Tan, T. (2022) [21] | Internal Validation study | III | 15 | 16 healthy individuals, 23.0 +/− 2.2 years | Running | 100 steps | Strike Index (CoP) | Convolutional Neural Network (CNN) | 1 IMU sensor; located on dorsum surface of shoe |
He, B. (2022) [49] | Internal Validation study | III | 14 | 11 subjects (10 healthy individuals, 1 subject 8 months post-stroke), 22.7 +/− 3.6 years and 64 years old | Walking | 60 s | CoM Height (CoMH) | Back propagation (BP) neural network and GRU network (a variant of recurrent neural network (RNN)) | 3 IMUs; located on the calf, thigh, and pelvis |
Chebel, E. (2021) [50] | Internal Validation study | III | 17 | 22 healthy individuals, 22–26 years | Walking and squat tasks | UND | CoM | Deep Neural Network (DNN) | 5 IMUs; located on lumbosacral joint, right/left shoulders, and right/left hips |
Hnat, S. K. (2021) [51] | Internal Validation study | III | 14 | 5 healthy individuals, Median age of 23 years | Standing balance with internal and external perturbations | UND | CoM | Artificial Neural Network (ANN) | 10 triaxial accelerometers; located on the torso, sternum, navel, pelvis, anterior thighs, and anterior shanks |
Lee, M. (2020) [52] | Internal Validation study | III | 15 | 20 healthy individuals, 24.7 +/− 3.2 years | Walking | 2 min | CoP | Artificial Neural Network (ANN) | 1 IMU; located on the Sacrum |
Wu, C. C. (2020) [53] | Internal Validation study | III | 14 | 5 healthy individuals, 25 +/− 1.87 years | Walking | 74 steps | CoP | LSTM model | 4 IMUs; located on left toe, lateral and heel parts of shoe, and waist |
Podobnik, J. (2020) [54] | Internal Validation study | III | 12 | 6 subjects (4 healthy individuals, 2 stroke patients), 32-55 years | Walking | 30 sec standing; 3 and 7 min walking trials | CoP | Non-linear Long-Short-Term Memory (LSTM) model | 7 IMUs; located on the pelvis, each thigh, shank, and foot |
Choi, A. (2019) [55] | Internal Validation study | III | 14 | 24 healthy individuals, 26.2 +/− 1.5 years | Walking | UND | CoM-CoP IA | Feed forward ANN model and LSTM memory model | 1 IMU; located on lumbar spine |
Chen, Vincent (2018) [56] | Internal Validation study | III | 15 | 10 healthy individuals, 24–31 years | Standing balance | 40 s | CoP | Neural network (NN), genetic algorithm (GA), and adaptive network-based fuzzy inference system (ANFIS) | 3 accelerometers; located on the upper trunk, waist, and lower thigh |
Nataraj, Raviraj (2012) [57] | Case study | IV | 11 | 1 individual with a thoracic-level spinal cord injury, Age Unknown | Standing balance | UND | CoM acceleration | Linear regression model | 2 (3-D) accelerometers; located on the pelvis and torso |
First Author (Year) | Testing Condition | Estimated Mechanical Parameter | Machine Learning Model | Root-Mean-square Error (RMSE) [cm or degrees] | Normalized RMSE (NRMSE) [%] | Spearman’s Rho Correlation Coefficient | Correlation Coefficient | Error Ratio (ER) [%] | Jaccard Index [%] |
---|---|---|---|---|---|---|---|---|---|
Yu, C. H. (2023) [46] | Walking | CoP-CoM Inclination Angle (IA) | Uni-LSTM | AP: ~0.75 deg | AP: ~4.5% | - | - | - | - |
ML: ~0.55 deg | ML: ~6% | - | - | - | - | ||||
Bi-LSTM | AP: ~0.65 deg | AP: ~4% | - | - | - | - | |||
ML: ~0.50 deg | ML: ~5.7% | - | - | - | - | ||||
Uni-GRU | AP: ~0.62 deg | AP: ~3.9% | - | - | - | - | |||
ML: ~0.49 deg | ML: ~5.5% | - | - | - | - | ||||
Bi-GRU | AP: 0.61 (0.24) deg | AP: 3.82 (1.53) % | - | - | - | - | |||
ML: 0.46 (0.21) deg | ML: 5.33 (3.76) % | - | - | - | - | ||||
Duong, T. (2023) [47] | Walking | CoP | GP | AP: 1.74 (0.39) cm [H]; 1.90 (0.48) [Patho] | AP: 5.85(1.64) % [H]; 6.93 (2.32) % [Patho] | - | AP: 0.95 [H]; 0.86 [Patho] | - | - |
ML: 0.56 (0.09) cm [H]; 0.70 (0.12) [Patho] | ML: 8.94(2.34) % [H]; 9.49 (1.63) % [Patho] | - | ML: 0.39 [H]; 0.33 [Patho] | - | - | ||||
Bi-LSTM | AP: 1.44 (0.29) cm [H]; 1.53 (0.39) cm [Patho] | AP: 4.79(1.11) % [H]; 5.59 (1.83) % [Patho] | - | AP: 0.97 [H]; 0.91 [Patho] | - | - | |||
ML: 0.51 (0.10) cm [H]; 0.60 (0.11) cm [Patho] | ML: 7.96(1.92) % [H]; 8.13 (1.41) % [Patho] | - | ML: 0.51 [H]; 0.47 [Patho] | - | - | ||||
Labrozzi, Gabrielle (2023) [13] | Walking and standing | CoM | Bi-LSTM | AP: 1.15 (0.80) cm [H]; 1.77 (0.62) [Patho] | - | - | - | - | - |
ML: 1.44 (0.65) cm [H]; 2.91 (0.62) [Patho] | - | - | - | - | - | ||||
Wantanajittikul, K. (2022) [48] | Standing variations (double stance, tandem, and single leg stance) | CoP | Bagging | - | - | 0.8894 | - | - | - |
SVM | 0.8978 | ||||||||
ANN | 0.8921 | ||||||||
GP | 0.8934 | ||||||||
LSBoost | UND | ||||||||
Tan, T. (2022) [21] | Running | Strike Index (CoP) | CNN | - | 6.9 (1.5) % | - | 0.89 (0.09) | - | - |
He, B. (2022) [49] | Walking | CoM Height (CoMH) | GRU | 0.1408~0.1662 cm | - | - | 0.906~0.922 | - | - |
BP Neural Network | 0.1717~0.1835 cm | - | - | 0.811~0.854 | - | - | |||
Chebel, E. (2021) [50] | Walking and squat tasks | CoM | DNN | AP: 0.845 (1.28) cm | - | - | - | - | - |
ML: 0.603 (0.24) cm | |||||||||
Hnat, S. K. (2021) [51] | Standing with internal and external perturbations | CoM | ANN | AP: 0.94 cm | AP: 14.6% | - | 0.83 | - | - |
ML: 0.60 cm | ML: 22.0% | ||||||||
Lee, M. (2020) [52] | Walking | CoP | ANN | - | AP: 8.22 (4.96) % | - | AP: 0.86 (0.30) | - | - |
ML: 19.54 (9.59)% | ML: 0.01 (1.43) | ||||||||
Wu, C. C. (2020) [53] | Walking | CoP | LSTM | - | AP: 5.88 (0.96) % | - | - | - | 93% |
ML: 25.33 (2.35)% | 63% | ||||||||
Podobnik, J. (2020) [54] | Walking | CoP | Non-linear LSTM | AP: 1.49 cm | - | - | - | - | - |
ML: 0.90 cm | |||||||||
Choi, A. (2019) [55] | Walking | CoP-CoM Inclination Angle (IA) | LSTM | AP: 1.97 (0.81) deg | - | - | 0.92 | - | - |
ML: 0.82 (0.16) deg | 0.96 | ||||||||
ANN | AP: 3.01 (0.18) deg | 0.81 | |||||||
ML: 1.27 (0.05) deg | 0.87 | ||||||||
Chen, Vincent (2018) [56] | Standing while following AP/ML excursion requests | CoP | GA | - | - | - | AP: 0.95 (0.03) | AP: 8.1 (2.5) % | - |
ML: 0.96 (0.03) | ML: 7.3 (2.6) % | ||||||||
ANFIS | AP: 0.95 (0.02) | AP: 8.2 (2.3) % | |||||||
ML: 0.96 (0.03) | ML: 7.3 (2.7) % | ||||||||
Neural Network | AP: 0.95 (0.02) | AP: 8.4 (2.3) % | |||||||
ML: 0.96 (0.03) | ML: 7.0 (2.6) % | ||||||||
Nataraj, R. (2013) [57] | Standing with external perturbations | CoM Acceleration | Linear Regression | - | - | - | AP: 0.972 | - | - |
ML: 0.993 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Museck, I.J.; Brinton, D.L.; Dean, J.C. The Use of Wearable Sensors and Machine Learning Methods to Estimate Biomechanical Characteristics During Standing Posture or Locomotion: A Systematic Review. Sensors 2024, 24, 7280. https://doi.org/10.3390/s24227280
Museck IJ, Brinton DL, Dean JC. The Use of Wearable Sensors and Machine Learning Methods to Estimate Biomechanical Characteristics During Standing Posture or Locomotion: A Systematic Review. Sensors. 2024; 24(22):7280. https://doi.org/10.3390/s24227280
Chicago/Turabian StyleMuseck, Isabelle J., Daniel L. Brinton, and Jesse C. Dean. 2024. "The Use of Wearable Sensors and Machine Learning Methods to Estimate Biomechanical Characteristics During Standing Posture or Locomotion: A Systematic Review" Sensors 24, no. 22: 7280. https://doi.org/10.3390/s24227280
APA StyleMuseck, I. J., Brinton, D. L., & Dean, J. C. (2024). The Use of Wearable Sensors and Machine Learning Methods to Estimate Biomechanical Characteristics During Standing Posture or Locomotion: A Systematic Review. Sensors, 24(22), 7280. https://doi.org/10.3390/s24227280