Space Debris In-Orbit Detection with Commercial Automotive LiDAR Sensors
Abstract
:1. Introduction
2. Materials and Methods
Maximum Distance from LiDAR to Object at Orbital Velocities
- Object 1—LiDAR: orbiting at an altitude of 840 km.
- Object 2—debris: orbiting slightly higher, at 840.05 km.
3. Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Letizia, F.; Lemmens, S. ESA Annual Space Environtment Statistics 2022. 2022. Available online: https://www.esa.int/Space_Safety/Space_Debris/ESA_s_Space_Environment_Report_2022 (accessed on 3 November 2023).
- Smirnov, N.E. Space Debris: Hazard Evaluation and Debris; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar] [CrossRef]
- Kelso, T. Analysis of the iridium 33-cosmos 2251 collision. Adv. Astronaut. Sci. 2009, 135, 1099–1112. [Google Scholar]
- Krag, H.; Serrano, M.; Braun, V.; Kuchynka, P.; Catania, M.; Siminski, J.; Schimmerohn, M.; Marc, X.; Kuijper, D.; Shurmer, I.; et al. A 1 cm space debris impact onto the Sentinel-1A solar array. Acta Astronaut. 2017, 137, 434–443. [Google Scholar] [CrossRef]
- ESSB-HB-U-002; Space Debris Mitigation Compliance Verification Guidelines. ESA: Paris, France, 2015; Issue 1, Revision 0.
- Sylvestrea, S.; Paramab, V.R. Space debris: Reasons, types, impacts and management. Indian J. Radio Space Phys. 2017, 46, 20–26. [Google Scholar]
- Englert, C.R.; Bays, J.T.; Marr, K.D.; Brown, C.M.; Nicholas, A.C.; Finne, T.T. Optical orbital debris spotter. Acta Astronaut. 2014, 104, 99–105. [Google Scholar] [CrossRef]
- Peltoniemi, J.; Zubko, N.; Virkki, A.K.; Gritsevich, M.; Moilanen, J.; Roulet, J.-C.; Nguyen, D.; Mitev, V.; Putzar, R.; Watson, E.; et al. Light scattering model for small space debris particles. Adv. Space Res. 2022, 70, 2961–2975. [Google Scholar] [CrossRef]
- Worms, J.; Girard, O.; Hauchecorne, A.; Muinonen, K. LIBRIS: An orbital imaging LIDAR for the detection of small to medium-sized debirs in low-earth orbit. Adv. Space Res. 1999, 23, 67–70. [Google Scholar] [CrossRef]
- Bobrovsky, A.I.; Galeeva, M.A.; Morozov, A.V.; Pavlov, V.A.; Tsytsulin, A.K. Automatic detection of objects on star sky images by using the convolutional neural network. In Proceedings of the International Conference “Emerging Trends in Applied and Computational Physics 2019” (ETACP-2019), Saint-Petersburg, Russian Federation, 21–22 March 2019; Volume 1236, p. 012066. [Google Scholar] [CrossRef]
- Kirchner, G.; Koidl, F.; Friederich, F.; Buske, I.; Völker, U.; Riede, W. Laser measurements to space debris from Graz SLR station. Adv. Space Res. 2013, 51, 21–24. [Google Scholar] [CrossRef]
- Šilha, J.; Schildknecht, T.; Kirchner, G.; Steindorfer, M.; Bernardi, F.; Gatto, A.; Prochazka, I.; Blazej, J.; Jilete, B.; Flohrer, T. Conceptual Design for Expert Coordination Centres Supporting Optical and SLR Observations in a SST System. In Proceedings of the 7th European Conference on Space Debris, Darmstadt, Germany, 18–21 April 2017. [Google Scholar]
- Xi, J.; Wen, D.; Ersoy, O.K.; Yi, H.; Yao, D.; Song, Z.; Xi, S. Space debris detection in optical image sequences. Appl. Opt. 2016, 55, 7929–7940. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xing, M.; Lu, G.; Bao, Z. SRMF-CLEAN Imaging Algorithm for Space Debris. IEEE Trans. Antennas Propag. 2007, 55, 3524–3533. [Google Scholar] [CrossRef]
- Pineau, D.; Felicetti, L. Design of an optical system for a Multi-CubeSats debris surveillance mission. Acta Astronaut. 2023, 210, 535–546. [Google Scholar] [CrossRef]
- Vallduriola, G.V.; Trujillo, D.A.S.; Helfers, T.; Daens, D.; Utzmann, J.; Pittet, J.N.; Lièvre, N. The use of streak observations to detect space debris. Int. J. Remote Sens. 2018, 39, 2066–2077. [Google Scholar] [CrossRef]
- Lopez-Calle, I.; Franco, A.I. Comparison of cubesat and microsat catastrophic failures in function of radiation and debris impact risk. Sci. Rep. 2023, 13, 385. [Google Scholar] [CrossRef]
- Sun, X. 1.15—Lidar Sensors From Space. In Comprehensive Remote Sensing; Elsevier: Oxford, UK, 2018; pp. 412–434. [Google Scholar] [CrossRef]
- Sakib, S.M.N. LiDAR Technology—An Overview. IUP J. Electr. Electron. Eng. 2022, 15, 36. [Google Scholar]
- Hecht, J. Lasers for LiDAR: FMCW LiDAR: An Alternative for Self-Driving Cars. 2019. Available online: https://www.laserfocusworld.com/home/article/16556322/lasers-for-lidar-fmcw-lidar-an-alternative-for-selfdriving-cars (accessed on 10 December 2023).
- Bilik, I. Comparative Analysis of Radar and Lidar Technologies for Automotive Applications. IEEE Intell. Trans. Syst. Mag. 2023, 15, 244–269. [Google Scholar] [CrossRef]
- Li, Y.; Moreau, J.; Ibanez-Guzman, J. Emergent Visual Sensors for Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2023, 24, 4716–4737. [Google Scholar] [CrossRef]
- Li, H.; Bamminger, N.; Magosi, Z.F.; Feichtinger, C.; Zhao, Y.; Mihalj, T.; Orucevic, F.; Eichberger, A. The Effect of Rainfall and Illumination on Automotive Sensors Detection Performance. Sustainability 2023, 15, 7260. [Google Scholar] [CrossRef]
Sensor ID | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Range (m) | 450 | 200 | 350 | 200 | 70 | 40 | 12 | 8 | 60 | 40 | 40 | 30 |
Satellites | 5 | 10 | 6 | 10 | 27 | 47 | 155 | 233 | 31 | 47 | 47 | 62 |
Color | Number of Satellites | Description |
---|---|---|
Green | <5 | Low constellation |
Orange | 5–10 | Moderate constellation |
Purple | 10–50 | High constellation |
Red | >50 | Very high constellation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Calle, I. Space Debris In-Orbit Detection with Commercial Automotive LiDAR Sensors. Sensors 2024, 24, 7293. https://doi.org/10.3390/s24227293
Lopez-Calle I. Space Debris In-Orbit Detection with Commercial Automotive LiDAR Sensors. Sensors. 2024; 24(22):7293. https://doi.org/10.3390/s24227293
Chicago/Turabian StyleLopez-Calle, Isabel. 2024. "Space Debris In-Orbit Detection with Commercial Automotive LiDAR Sensors" Sensors 24, no. 22: 7293. https://doi.org/10.3390/s24227293
APA StyleLopez-Calle, I. (2024). Space Debris In-Orbit Detection with Commercial Automotive LiDAR Sensors. Sensors, 24(22), 7293. https://doi.org/10.3390/s24227293