Terahertz Spectroscopy in Assessing Temperature-Shock Effects on Citrus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatment
2.2. THz-TDS System
2.3. THz Optical Parameter Extraction and Analytical Calculation of Data
2.4. Physiological Indicator Tests
2.5. Correlational Analysis
3. Results
3.1. Continuous High-Temperature Treatment
3.1.1. THz Spectroscopy
3.1.2. Ion Leakage Rate
3.1.3. Gravimetric Method
3.2. Intermittent High-Temperature Treatment
THz Spectroscopy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; Lu, S.; Wang, J.; Chen, Z.; Zhang, Y.; Duan, J.; Liu, P.; Wang, X.; Guo, J. Responses of Physiological, Morphological and Anatomical Traits to Abiotic Stress in Woody Plants. Forests 2023, 14, 1784. [Google Scholar] [CrossRef]
- Ren, A.; Zahid, A.; Fan, D.; Yang, X.; Imran, M.A.; Alomainy, A.; Abbasi, Q.H. State-of-the-Art in Terahertz Sensing for Food and Water Security—A Comprehensive Review. Trends Food Sci. Technol. 2019, 85, 241–251. [Google Scholar] [CrossRef]
- Huang, C.H.; Singh, G.P.; Park, S.H.; Chua, N.-H.; Ram, R.J.; Park, B.S. Early Diagnosis and Management of Nitrogen Deficiency in Plants Utilizing Raman Spectroscopy. Front. Plant Sci. 2020, 11, 663. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.J.; Mangina, E.; Negrão, S. Advancements in Imaging Sensors and AI for Plant Stress Detection: A Systematic Literature Review. Plant Phenomics 2024, 6, 0153. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Chen, H.Y.H.; Ruan, H. Response of Plants to Water Stress: A Meta-Analysis. Front. Plant Sci. 2020, 11, 978. [Google Scholar] [CrossRef]
- Lin, P.-A.; Kansman, J.; Chuang, W.-P.; Robert, C.; Erb, M.; Felton, G.W. Water Availability and Plant-Herbivore Interactions. J. Exp. Bot. 2023, 74, 2811–2828. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Hossain, O.; Paul, R.; Yao, S.; Wu, S.; Ristaino, J.B.; Zhu, Y.; Wei, Q. Real-Time Monitoring of Plant Stresses via Chemiresistive Profiling of Leaf Volatiles by a Wearable Sensor. Matter 2021, 4, 2553–2570. [Google Scholar] [CrossRef]
- Cecilia, B.; Francesca, A.; Dalila, P.; Carlo, S.; Antonella, G.; Francesco, F.; Marco, R.; Mauro, C. On-Line Monitoring of Plant Water Status: Validation of a Novel Sensor Based on Photon Attenuation of Radiation through the Leaf. Sci. Total Environ. 2022, 817, 152881. [Google Scholar] [CrossRef]
- Serrano-Finetti, E.; Castillo, E.; Alejos, S.; León Hilario, L.M. Toward Noninvasive Monitoring of Plant Leaf Water Content by Electrical Impedance Spectroscopy. Comput. Electron. Agric. 2023, 210, 107907. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, W.; Zhang, W.; Yang, Y.; Hu, G.; Ge, D.; Liu, H.; Cao, H. A Cloud Computing-Based Approach Using the Visible near-Infrared Spectrum to Classify Greenhouse Tomato Plants under Water Stress. Comput. Electron. Agric. 2021, 181, 105966. [Google Scholar] [CrossRef]
- Lassalle, G. Monitoring Natural and Anthropogenic Plant Stressors by Hyperspectral Remote Sensing: Recommendations and Guidelines Based on a Meta-Review. Sci. Total Environ. 2021, 788, 147758. [Google Scholar] [CrossRef] [PubMed]
- Sanaeifar, A.; Yang, C.; de la Guardia, M.; Zhang, W.; Li, X.; He, Y. Proximal Hyperspectral Sensing of Abiotic Stresses in Plants. Sci. Total Environ. 2023, 861, 160652. [Google Scholar] [CrossRef] [PubMed]
- Zahid, A.; Abbas, H.T.; Ren, A.; Zoha, A.; Heidari, H.; Shah, S.A.; Imran, M.A.; Alomainy, A.; Abbasi, Q.H. Machine learning driven non-invasive approach of water content estimation in living plant leaves using terahertz waves. Plant Methods 2019, 15, 138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Wang, Y.; Hu, L.; Wang, P. Detection of Tomato Water Stress Based on Terahertz Spectroscopy. Front. Plant Sci. 2023, 14, 1095434. [Google Scholar] [CrossRef]
- Wei, L.; Yu, L.; Jiaoqi, H.; Guorong, H.; Yang, Z.; Weiling, F. Application of Terahertz Spectroscopy in Biomolecule Detection. Front. Lab. Med. 2018, 2, 127–133. [Google Scholar] [CrossRef]
- Weisenstein, C.; Wigger, A.K.; Richter, M.; Sczech, R.; Bosserhoff, A.K.; Bolívar, P.H. THz Detection of Biomolecules in Aqueous Environments—Status and Perspectives for Analysis Under Physiological Conditions and Clinical Use. J. Infrared Millim. Terahertz Waves 2021, 42, 607–646. [Google Scholar] [CrossRef]
- Xu, J.; Plaxco, K.W.; Allen, S.J. Absorption Spectra of Liquid Water and Aqueous Buffers between 0.3 and 3.72 THz. J. Chem. Phys. 2006, 124, 036101. [Google Scholar] [CrossRef]
- Afsah-Hejri, L.; Akbari, E.; Toudeshki, A.; Homayouni, T.; Alizadeh, A.; Ehsani, R. Terahertz Spectroscopy and Imaging: A Review on Agricultural Applications. Comput. Electron. Agric. 2020, 177, 105628. [Google Scholar] [CrossRef]
- Born, N.; Behringer, D.; Liepelt, S.; Beyer, S.; Schwerdtfeger, M.; Ziegenhagen, B.; Koch, M. Monitoring Plant Drought Stress Response Using Terahertz Time-Domain Spectroscopy. Plant Physiol. 2014, 164, 1571–1577. [Google Scholar] [CrossRef]
- Baldacci, L.; Pagano, M.; Masini, L.; Toncelli, A.; Carelli, G.; Storchi, P.; Tredicucci, A. Non-invasive absolute measurement of leaf water content using terahertz quantum cascade lasers. Plant Methods 2017, 13, 51. [Google Scholar] [CrossRef]
- Li, B.; Zhao, X.; Zhang, Y.; Zhang, S.; Luo, B. Prediction and Monitoring of Leaf Water Content in Soybean Plants Using Terahertz Time-Domain Spectroscopy. Comput. Electron. Agric. 2020, 170, 105239. [Google Scholar] [CrossRef]
- Quemada, C.; Pérez-Escudero, J.M.; Gonzalo, R.; Ederra, I.; Santesteban, L.G.; Torres, N.; Iriarte, J.C. Remote Sensing for Plant Water Content Monitoring: A Review. Remote Sens. 2021, 13, 2088. [Google Scholar] [CrossRef]
- Nie, P.; Qu, F.; Lin, L.; Dong, T.; He, Y.; Shao, Y.; Zhang, Y. Detection of Water Content in Rapeseed Leaves Using Terahertz Spectroscopy. Sensors 2017, 17, 2830. [Google Scholar] [CrossRef]
- Kamiyoshi, K.; Kudô, A. Dielectric Relaxation of Water Contained in Plant Tissues. Jpn. J. Appl. Phys. 1978, 17, 1531–1536. [Google Scholar] [CrossRef]
- Borovkova, M.; Khodzitsky, M.; Demchenko, P.; Cherkasova, O.; Popov, A.; Meglinski, I. Terahertz Time-Domain Spectroscopy for Non-Invasive Assessment of Water Content in Biological Samples. Biomed. Opt. Express 2018, 9, 2266. [Google Scholar] [CrossRef]
- Cherkasova, O.P.; Nazarov, M.M.; Konnikova, M.; Shkurinov, A.P. THz Spectroscopy of Bound Water in Glucose: Direct Measurements from Crystalline to Dissolved State. J. Infrared Millim. Terahertz Waves 2020, 41, 1057–1068. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, P.; Wang, Y.; Hu, L.; Luo, X.; Mao, H.; Shen, B. Cucumber Powdery Mildew Detection Method Based on Hyperspectra-Terahertz. Front. Plant Sci. 2022, 13, 1035731. [Google Scholar] [CrossRef] [PubMed]
- Zang, Z.; Li, Z.; Wang, J.; Lu, X.; Lyu, Q.; Tang, M.; Cui, H.-L.; Yan, S. Terahertz Spectroscopic Monitoring and Analysis of Citrus Leaf Water Status under Low Temperature Stress. Plant Physiol. Biochem. 2023, 194, 52–59. [Google Scholar] [CrossRef]
- Theocharis, A.; Clément, C.; Barka, E.A. Physiological and Molecular Changes in Plants Grown at Low Temperatures. Planta 2012, 235, 1091–1105. [Google Scholar] [CrossRef]
- Wei, S.; Tian, B.-Q.; Jia, H.-F.; Zhang, H.-Y.; He, F.; Song, Z.-P. Investigation on Water Distribution and State in Tobacco Leaves with Stalks during Curing by LF-NMR and MRI. Dry. Technol. 2018, 36, 1515–1522. [Google Scholar] [CrossRef]
- Zang, Z.; Li, Z.; Lu, X.; Liang, J.; Wang, J.; Cui, H.-L.; Yan, S. Terahertz Spectroscopy for Quantification of Free Water and Bound Water in Leaf. Comput. Electron. Agric. 2021, 191, 106515. [Google Scholar] [CrossRef]
- Yan, S.; Wei, D.; Tang, M.; Shi, C.; Zhang, M.; Yang, Z.; Du, C.; Cui, H.-L. Determination of Critical Micelle Concentrations of Surfactants by Terahertz Time-Domain Spectroscopy. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 532–540. [Google Scholar] [CrossRef]
- Fischer, B.M.; Hoffmann, M.; Helm, H.; Wilk, R.; Rutz, F.; Kleine-Ostmann, T.; Koch, M.; Jepsen, P.U. Terahertz Time-Domain Spectroscopy and Imaging of Artificial RNA. Opt. Express 2005, 13, 5205. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Cui, H.-L.; Shi, C.; Han, X.; Ma, Y.; Chen, J.; Chang, T.; Wei, D.; Zhang, Y.; et al. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging. Sensors 2016, 16, 875. [Google Scholar] [CrossRef]
- Datt, B. Remote Sensing of Water Content in Eucalyptus Leaves. Aust. J. Bot. 1999, 47, 909. [Google Scholar] [CrossRef]
- Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Grégoire, J.-M. Detecting Vegetation Leaf Water Content Using Reflectance in the Optical Domain. Remote Sens. Environ. 2001, 77, 22–33. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, L.; Yan, B.; Shi, L.; Liu, G.; He, Y. Morphological and Physiological Responses of Heteropogon Contortus to Drought Stress in a Dry-Hot Valley. Bot. Stud. 2016, 57, 17. [Google Scholar] [CrossRef] [PubMed]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M. Heat Tolerance in Plants: An Overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Miranda, M.T.; Da Silva, S.F.; Moura, B.B.; Hayashi, A.H.; Machado, E.C.; Ribeiro, R.V. Hydraulic redistribution in Citrus rootstocks under drought. Theor. Exp. Plant Physiol. 2018, 30, 165–172. [Google Scholar] [CrossRef]
- Xu, Y.; Zeng, R.; Zhou, H.; Qiu, M.; Gan, Z.; Yang, Y.; Hu, S.; Zhou, J.; Hu, C.; Zhang, J. Citrus FRIGIDA Cooperates with Its Interaction Partner Dehydrin to Regulate Drought Tolerance. Plant J. 2022, 111, 164–182. [Google Scholar] [CrossRef]
- Cui, Y.; Ouyang, S.; Zhao, Y.; Tie, L.; Shao, C.; Duan, H. Plant Responses to High Temperature and Drought: A Bibliometrics Analysis. Front. Plant Sci. 2022, 13, 1052660. [Google Scholar] [CrossRef]
- Rowland, L.; Ramírez-Valiente, J.; Hartley, I.P.; Mencuccini, M. How Woody Plants Adjust Above- and below-Ground Traits in Response to Sustained Drought. New Phytol. 2023, 239, 1173–1189. [Google Scholar] [CrossRef]
- Şimşek, Ö.; Isak, M.A.; Dönmez, D.; Dalda Şekerci, A.; İzgü, T.; Kaçar, Y.A. Advanced Biotechnological Interventions in Mitigating Drought Stress in Plants. Plants 2024, 13, 717. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, A.; Sita, K.; Kumar, J.; Kumar, S.; Singh, S.; Siddique, K.H.M.; Nayyar, H. Effects of Drought, Heat and Their Interaction on the Growth, Yield and Photosynthetic Function of Lentil (Lens culinaris Medikus) Genotypes Varying in Heat and Drought Sensitivity. Front. Plant Sci. 2017, 8, 1776. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.R.; Caverzan, A.; Chavarria, G. Water deficit stress, ROS involvement, and plant performance. Arch. Agron. Soil Sci. 2019, 65, 1160–1181. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Hu, S.; Xu, J.; Nian, J.; Cao, X.; Chen, M.; Cen, J.; Liu, X.; Zhang, Z.; et al. LEAF TIP RUMPLED 1 Regulates Leaf Morphology and Salt Tolerance in Rice. Int. J. Mol. Sci. 2022, 23, 8818. [Google Scholar] [CrossRef] [PubMed]
- Shenglin, W.; Jingnan, L.; Lijun, W.; Jiabao, W.; Zengliang, Y. The Stimulation Effects of N+ Ion Beam on Liquorice and Its Influence on Water Stress. Plasma Sci. Technol. 2006, 8, 247–252. [Google Scholar] [CrossRef]
- Stefi, A.L.; Papaioannou, V.; Nikou, T.; Halabalaki, M.; Vassilacopoulou, D.; Christodoulakis, N.S. Heat and Cold-Stressed Individuals of Pistacia lentiscus (Mastic Tree) Do Modify Their Secreting Profile. Plants 2022, 11, 3290. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Feng, X.; Ackerly, D.D.; Dawson, T.E.; Manzoni, S.; Skelton, R.P.; Vico, G.; Thompson, S.E. The Ecohydrological Context of Drought and Classification of Plant Responses. Ecol. Lett. 2018, 21, 1723–1736. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, S.; Song, J.; Huang, J.; Li, G.; Zhu, S. Feasibility of Terahertz Spectroscopy for Hybrid Purity Verification of Rice Seed. Int. J. Agric. Biol. Eng. 2018, 11, 65–69. [Google Scholar] [CrossRef]
- Liu, C.; Shen, W.; Yang, C.; Zeng, L.; Gao, C. Knowns and Unknowns of Plasma Membrane Protein Degradation in Plants. Plant Sci. 2018, 272, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Morais, M.C.; Ferreira, H.; Cabral, J.A.; Gonçalves, B. Differential Tolerance of the Woody Invasive Hakea Sericea to Drought and Terminal Heat Stress. Tree Physiol. 2023, 43, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Tsarouhas, V. Application of Two Electrical Methods for the Rapid Assessment of Freezing Resistance in Salix eriocephala. Biomass Bioenergy 2000, 19, 165–175. [Google Scholar] [CrossRef]
- Silva, E.N.; Ferreira-Silva, S.L.; Fontenele, A.D.V.; Ribeiro, R.V.; Viégas, R.A.; Silveira, J.A.G. Photosynthetic Changes and Protective Mechanisms against Oxidative Damage Subjected to Isolated and Combined Drought and Heat Stresses in Jatropha curcas Plants. J. Plant Physiol. 2010, 167, 1157–1164. [Google Scholar] [CrossRef]
- Lemonsu, A.; Beaulant, A.; Somot, S.; Masson, V. Evolution of Heat Wave Occurrence over the Paris Basin (France) in the 21st Century. Clim. Res. 2014, 61, 75–91. [Google Scholar] [CrossRef]
- Christidis, N.; Jones, G.S.; Stott, P.A. Dramatically Increasing Chance of Extremely Hot Summers since the 2003 European Heatwave. Nat. Clim. Chang. 2015, 5, 46–50. [Google Scholar] [CrossRef]
- Li, L.; Chen, G.; Yuan, M.; Guo, S.; Wang, Y.; Sun, J. CsbZIP2-miR9748-CsNPF4.4 Module Mediates High Temperature Tolerance of Cucumber Through Jasmonic Acid Pathway. Front. Plant Sci. 2022, 13, 883876. [Google Scholar] [CrossRef] [PubMed]
- Persaud, L.; Bheemanahalli, R.; Seepaul, R.; Reddy, K.R.; Macoon, B. Low- and High-Temperature Phenotypic Diversity of Brassica carinata Genotypes for Early-Season Growth and Development. Front. Plant Sci. 2022, 13, 900011. [Google Scholar] [CrossRef]
- Schulze, W.X.; Altenbuchinger, M.; He, M.; Kränzlein, M.; Zörb, C. Proteome Profiling of Repeated Drought Stress Reveals Genotype-Specific Responses and Memory Effects in Maize. Plant Physiol. Biochem. 2021, 159, 67–79. [Google Scholar] [CrossRef]
- Balla, K.; Karsai, I.; Kiss, T.; Horváth, Á.; Berki, Z.; Cseh, A.; Bónis, P.; Árendás, T.; Veisz, O. Single versus Repeated Heat Stress in Wheat: What Are the Consequences in Different Developmental Phases? PLoS ONE 2021, 16, e0252070. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Yan, S.; Zang, Z.; Fu, Y.; Wei, D.; Cui, H.-L.; Lai, P. Temporal and Spatial Variability of Water Status in Plant Leaves by Terahertz Imaging. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 520–527. [Google Scholar] [CrossRef]
Treatment Time (h) | Relative Electrolyte Leakage Rate | ||
---|---|---|---|
30 °C (%) | 35 °C (%) | 40 °C (%) | |
Control (20 °C) | 9.44 ± 1.27 | 9.44 ± 1.27 | 9.44 ± 1.27 |
1 | 12.03 ± 0.96 | 12.37 ± 0.54 | 14.29 ± 2.31 |
2 | 13.88 ± 3.93 | 15.12 ± 1.81 | 16.92 ± 2.51 |
4 | 15.28 ± 5.69 | 24.57 ± 7.94 | 37.11 ± 7.67 |
6 | 22.91 ± 6.01 | 26.27 ± 4.82 | 41.19 ± 8.03 |
16 | 30.66 ± 7.35 | 42.92 ± 8.56 | 63.92 ± 9.20 |
Volume Fraction (%) | ||||
---|---|---|---|---|
Water | Free Water | Bound Water | Bound Water/Free Water | |
30 (°C) | ↓ | ↓ | → | ↑ |
35 (°C) | ↓ | ↓ | ↑ | ↑ |
40 (°C) | ↓ | ↓ | ↑ | ↑ |
Chilling stress | ↓ | ↓ | ↑ | ↑ |
Freezing stress | ↑ | ↑ | ↑ | ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zang, Z.; Li, X.; Tang, D.; Xiao, Q.; Zhang, M.; Yan, S. Terahertz Spectroscopy in Assessing Temperature-Shock Effects on Citrus. Sensors 2024, 24, 7315. https://doi.org/10.3390/s24227315
Wang J, Zang Z, Li X, Tang D, Xiao Q, Zhang M, Yan S. Terahertz Spectroscopy in Assessing Temperature-Shock Effects on Citrus. Sensors. 2024; 24(22):7315. https://doi.org/10.3390/s24227315
Chicago/Turabian StyleWang, Junbo, Ziyi Zang, Xiaomei Li, Dongyun Tang, Qi Xiao, Mingkun Zhang, and Shihan Yan. 2024. "Terahertz Spectroscopy in Assessing Temperature-Shock Effects on Citrus" Sensors 24, no. 22: 7315. https://doi.org/10.3390/s24227315
APA StyleWang, J., Zang, Z., Li, X., Tang, D., Xiao, Q., Zhang, M., & Yan, S. (2024). Terahertz Spectroscopy in Assessing Temperature-Shock Effects on Citrus. Sensors, 24(22), 7315. https://doi.org/10.3390/s24227315