Coal and Gangue Detection Networks with Compact and High-Performance Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. YOLOX Object Detector
2.2. Definition of the Label Rewriting Problem
2.3. Measure the Distribution Density of Objects in Images
2.4. Measure the Scale of an Object in an Image
2.5. The Structure of the CGDet Model
3. Experiment
Experimental Environment Settings and Dataset
4. Results, Discussion, and Analysis
4.1. Ablation Experiments with Different Components
4.2. Using ODDM to Measure the Distribution Density of Objects in Images
4.3. Using RROSM to Measure the Scale of Objects in Images
4.4. Elimination of Redundant Detection Heads via ODDM
4.5. Visualization and Analysis of Results
4.6. Comparison of the Performance of Different Detectors for Detecting Coal and Gangue
4.7. Comparison of Different Coal and Gangue Perception Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.-P.; Zhang, Z.-M.; Guo, Z.-H.; Su, C.; Sun, L.-H. Energy Structure Transformation in the Context of Carbon Neutralization: Evolutionary Game Analysis Based on Inclusive Development of Coal and Clean Energy. J. Clean. Prod. 2023, 398, 136626. [Google Scholar] [CrossRef]
- Zhang, J.X.; Zhang, Q.; Spearing AJ, S.; Miao, X.X.; Guo, S.; Sun, Q. Green Coal Mining Technique Integrating Mining-Dressing-Gas Draining-Backfilling-Mining. Int. J. Min. Sci. Technol. 2017, 27, 17–27. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, W.X.; Lin, B.Q.; Si, G.Y.; Zhang, J.G.; Wang, J.L. Integration of Protective Mining and Underground Backfilling for Coal and Gas Outburst Control: A Case Study. Process Saf. Environ. Prot. 2022, 157, 273–283. [Google Scholar]
- Sotoudeh, F.; Nehring, M.; Kizil, M.; Knights, P. Integrated Underground Mining and Pre-Concentration Systems; a Critical Review of Technical Concepts and Developments. Int. J. Mining Reclam. Environ. 2021, 35, 153–182. [Google Scholar] [CrossRef]
- Liu, H.; Xu, K. Recognition of Gangues from Color Images Using Convolutional Neural Networks with Attention Mechanism. Measurement 2023, 206, 112273. [Google Scholar] [CrossRef]
- Luo, X.; He, K.; Zhang, Y.; He, P.; Zhang, Y. A Review of Intelligent Ore Sorting Technology and Equipment Development. Int. J. Miner. Met. Mater. 2022, 29, 1647–1655. [Google Scholar] [CrossRef]
- Yang, J.; Peng, J.; Li, Y.; Xie, Q.; Wu, Q.; Wang, J. Gangue Localization and Volume Measurement Based on Adaptive Deep Feature Fusion and Surface Curvature Filter. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, M.; Xia, C. An improved classification diagnosis approach for cervical images based on deep neural networks. Pattern Anal. Appl. 2024, 27, 79. [Google Scholar] [CrossRef]
- Campos, S.; Zamora, J.; Allende, H. Block-Wise Imputation EM Algorithm in Multi-Source Scenario: ADNI Case. Pattern Anal. Appl. 2024, 27, 44. [Google Scholar] [CrossRef]
- Akbaba, E.E.; Gurkan, F.; Gunsel, B. Boosting Person ReID Feature Extraction via Dynamic Convolution. Pattern Anal. Appl. 2024, 27, 80. [Google Scholar] [CrossRef]
- Zou, L.; Yu, X.; Li, M.; Lei, M.; Yu, H. Nondestructive Identification of Coal and Gangue via Near-infrared Spectroscopy Based on Improved Broad Learning. IEEE Trans. Instrum. Meas. 2020, 69, 8043–8052. [Google Scholar] [CrossRef]
- Li, C.; Wang, J. Remote Sensing Image Location Based on Improved Yolov7 Target Detection. Pattern Anal. Appl. 2024, 27, 50. [Google Scholar] [CrossRef]
- Bao, W.; Zhang, H.; Ding, Y.; Shen, F.; Li, L. EdgeNet: A Low-Power Image Recognition Model Based on Small Sample Information. Pattern Anal. Appl. 2024, 27, 82. [Google Scholar] [CrossRef]
- Kim, S.; Jang, I.-S.; Ko, B.C. Domain-Free Fire Detection Using the Spatial–Temporal Attention Transform of the Yolo Backbone. Pattern Anal. Appl. 2024, 27, 45. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Z.; Xu, Z.; Xu, L.; Meng, G.; Li, Z.; Chen, S. An Image-Based Hierarchical Deep Learning Framework for Coal and Gangue Detection. IEEE Access 2019, 7, 184686–184699. [Google Scholar] [CrossRef]
- Lei, S.; Xiao, X.; Zhang, M.; Dai, J. Visual classification method based on CNN for coal-gangue sorting robots. In Proceedings of the 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), Dalian, China, 19–20 September 2020; pp. 543–547. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Li, D.; Ren, H.; Wang, G.; Wang, S.; Wang, W.; Du, M. Coal Gangue Detection and Recognition Method Based on Multiscale Fusion Lightweight Network SMS-YOLOv3. Energy Sci. Eng. 2023, 11, 1783–1797. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, W.; Xu, Z.; Zhang, K.; Lv, H. Cascade Network for Detection of Coal and Gangue in the Production Context. Powder Technol. 2021, 377, 361–371. [Google Scholar] [CrossRef]
- Li, D.; Wang, G.; Zhang, Y.; Wang, S. Coal Gangue Detection and Recognition Algorithm Based on Deformable Convolution Yolov3. IET Image Process. 2022, 16, 134–144. [Google Scholar] [CrossRef]
- Yan, P.; Sun, Q.; Yin, N.; Hua, L.; Shang, S.; Zhang, C. Detection of Coal and Gangue Based on Improved Yolov5.1 Which Embedded Scse Module. Measurement 2022, 188, 110530. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.G.; Li, Y.S.; Gao, M.W. Recognition Methods for Coal and Coal Gangue Based on Deep Learning. IEEE Access 2021, 9, 77599–77610. [Google Scholar] [CrossRef]
- Yan, P.; Kan, X.; Zhang, H.; Zhang, X.; Chen, F.; Li, X. Target Recognition of Coal and Gangue Based on Improved Yolov5s and Spectral Technology. Sensors 2023, 23, 4911. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Miao, C.; Li, X.; Liu, Y.; Wang, Y.; Zheng, Y. Improved Yolov7 Network Model for Gangue Selection Robot for Gangue and Foreign Matter Detection in Coal. Sensors 2023, 23, 5140. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhou, Y.; Huang, Y.; Han, T. Yolov4-Tiny-Based Coal Gangue Image Recognition and FPGA Implementation. Micromachines 2022, 13, 1983. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, S.; Wang, Y.; Huan, W. Review of Research on Lightweight Convolutional Neural Networks. In Proceedings of the 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC 2020), Chongqing, China, 12–14 June 2020; pp. 1713–1720. [Google Scholar]
- Chen, F.; Li, S.; Han, J.; Ren, F.; Yang, Z. Review of Lightweight Deep Convolutional Neural Networks. Arch. Comput. Methods Eng. 2024, 31, 1915–1937. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Christian, S.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Christian, S.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-V4, Inception-Resnet and the Impact of Residual Connections on Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar]
- Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Regularized Evolution for Image Classifier Architecture Search. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019. [Google Scholar]
- Vysogorets, A.; Kempe, J. Connectivity Matters: Neural Network Pruning through the Lens of Effective Sparsity. J. Mach. Learn. Res. 2021, 24, 1–23. [Google Scholar] [CrossRef]
- Jaderberg, M.; Vedaldi, A.; Zisserman, A. Speeding up Convolutional Neural Networks with Low Rank Expansions. arXiv 2014, arXiv:1405.3866. [Google Scholar]
- Zhang, X.; Zou, J.; He, K.; Sun, J. Accelerating Very Deep Convolutional Networks for Classification and Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 1943–1955. [Google Scholar] [CrossRef]
- Guo, Y.; Yao, A.; Zhao, H.; Chen, Y. Network Sketching: Exploiting Binary Structure in Deep Cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Hinton, G. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
- Xue, G.; Li, S.; Hou, P.; Gao, S.; Tan, R. Research on Lightweight Yolo Coal Gangue Detection Algorithm Based on Resnet18 Backbone Feature Network. Internet Things 2023, 22, 100762. [Google Scholar] [CrossRef]
- Liu, J.; Qiao, H.; Yang, L.; Guo, J. Improved Lightweight Yolov4 Foreign Object Detection Method for Conveyor Belts Combined with Cbam. Appl. Sci. 2023, 13, 8465. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, H.-B. Coal Gangue Detection Method Based on Improved SSD Algorithm. In Proceedings of the 2021 International Conference on Intelligent Transportation, Big Data Smart City, Xi’an, China, 27–28 March 2021; pp. 634–637. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the European Conference on Computer Vision 2016, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Liu, Y.; Wang, X.; Zhang, Z.; Deng, F. LOSN: Lightweight Ore Sorting Networks for Edge Device Environment. Eng. Appl. Artif. Intell 2023, 123, 106191. [Google Scholar] [CrossRef]
- Cao, Z.; Li, Z.; Fang, L.; Li, J. Lightweight Coal and Gangue Detection Algorithm Based on Improved Yolov7-Tiny. Int. J. Coal Prep. Util. 2024, 44, 1773–1792. [Google Scholar] [CrossRef]
- Yan, P.; Zhang, H.; Kan, X.; Chen, F.; Wang, C.; Liu, Z. Lightweight Detection Method of Coal Gangue Based on Multispectral and Improved Yolov5s. Int. J. Coal Prep. Util. 2024, 44, 399–414. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, J.; Li, Z.; Sun, X.; Wang, G. Gdps-Yolo: An Improved Yolov8s for Coal Gangue Detection. Int. J. Coal Prep. Util. 2024. [Google Scholar] [CrossRef]
- Xin, F.; Jia, Q.; Yang, Y.; Pan, H.; Wang, Z. A High Accuracy Detection Method for Coal and Gangue with S3DD-Yolov8. Int. J. Coal Prep. Util. 2024, 1–19. [Google Scholar] [CrossRef]
- Yan, P.; Wang, W.; Li, G.; Zhao, Y.; Wang, J.; Wen, Z. Detection of Coal Gangue Based on Spectral Technology and Enhanced Lightweight Yolov7-tiny. Int. J. Coal Prep. Util. 2024, 44, 1843–1863. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, J.; Wang, H.; Wang, M. Progressive Learning with Multi-Scale Attention Network for Cross-Domain Vehicle re-Identification. Sci. China Inf. Sci. 2022, 65, 160103. [Google Scholar] [CrossRef]
- Wang, H.; Yao, M.; Chen, Y.; Xu, Y.; Liu, H.; Jia, W.; Fu, X.; Wang, Y. Manifold-Based Incomplete Multi-View Clustering via Bi-Consistency Guidance. IEEE Trans. Multimed. 2024, 26, 10001–10014. [Google Scholar] [CrossRef]
- Wang, H.; Yao, M.; Jiang, G.; Mi, Z.; Fu, X. Graph-Collaborated Auto-Encoder Hashing for Multiview Binary Clustering. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 10121–10133. [Google Scholar] [CrossRef]
- Zheng, G.; Songtao, L.; Feng, W.; Zeming, L.; Jian, S. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar]
- Lin, T.Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Liu, H.; Wang, D.; Xu, K.; Zhou, P.; Zhou, D. Lightweight Convolutional Neural Network for Counting Densely Piled Steel Bars. Autom. Constr. 2023, 146, 104692. [Google Scholar] [CrossRef]
- Lin, T.Y.; Michael, M.; Serge, B.; James, H.; Pietro, P.; Deva, R.; Piotr, D.; Zitnick, C.L. Lawrence Zitnick. Microsoft Coco: Common Objects in Context. In Computer Vision—ECCV 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar]
Model | Improvement Method | Performance | |||||||
---|---|---|---|---|---|---|---|---|---|
FPN | FPND | Head | AP50 (%) | AR50 (%) | mAP50 (%) | Parameters (M) | GFLOPs | Inference Time (ms) | |
YOLOX-s | 3 | 93.8 | 99.5 | 69.6 | 8.94 | 23.55 | 19.87 | ||
A | √ | 3 | 96.5 | 99.0 | 98.0 | 6.72 | 21.04 | 16.11 | |
B | √ | 3 | 96.7 | 99.3 | 97.9 | 5.00 | 12.66 | 15.57 | |
CGDet | √ | 1 | 96.7 | 99.2 | 98.3 | 4.76 | 12.26 | 13.61 |
Neck | AP50 (%) | AR50 (%) | mAP50 (%) | mAR50 (%) | Parameters (M) | GFLOPs | Inference Time (ms) |
---|---|---|---|---|---|---|---|
PAN | 96.2 | 98.9 | 98.0 | 99.6 | 8.94 | 23.55 | 19.87 |
FPN | 96.5 | 99.0 | 98.0 | 99.6 | 6.72 | 21.04 | 16.11 |
FPND | 96.7 | 99.3 | 97.9 | 99.6 | 5.00 | 12.66 | 15.57 |
Feature Map | AP50 (%) | AR50 (%) | mAP50 (%) | mAR50 (%) | Parameters (M) | GFLOPs |
---|---|---|---|---|---|---|
P5 | 83.1 | 87.7 | 85.1 | 77.0 | 4.35 | 9.80 |
P4 | 93.8 | 95.9 | 95.8 | 97.0 | 4.68 | 10.76 |
P3 (CGDet) | 96.7 | 99.2 | 98.3 | 99.8 | 4.76 | 12.26 |
Model | AP50 (%) | AR50 (%) | Parameters (M) | GFLOPs |
---|---|---|---|---|
Faster R-CNN | 96.4 | 97.1 | 41.35 | 81.66 |
YOLOF | 96.2 | 98.4 | 42.36 | 34.49 |
AutoAssign | 91.0 | 96.8 | 36.25 | 69.54 |
YOLOV8n | 95.6 | 99.7 | 3.2 | 8.7 |
YOLOV8s | 95.6 | 99.4 | 11.2 | 28.6 |
CGDet | 96.7 | 99.2 | 4.76 | 12.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Liu, H.; Liu, Y.; Li, J.; Xu, K. Coal and Gangue Detection Networks with Compact and High-Performance Design. Sensors 2024, 24, 7318. https://doi.org/10.3390/s24227318
Cao X, Liu H, Liu Y, Li J, Xu K. Coal and Gangue Detection Networks with Compact and High-Performance Design. Sensors. 2024; 24(22):7318. https://doi.org/10.3390/s24227318
Chicago/Turabian StyleCao, Xiangyu, Huajie Liu, Yang Liu, Junheng Li, and Ke Xu. 2024. "Coal and Gangue Detection Networks with Compact and High-Performance Design" Sensors 24, no. 22: 7318. https://doi.org/10.3390/s24227318
APA StyleCao, X., Liu, H., Liu, Y., Li, J., & Xu, K. (2024). Coal and Gangue Detection Networks with Compact and High-Performance Design. Sensors, 24(22), 7318. https://doi.org/10.3390/s24227318