Multimodal Trajectory Prediction for Diverse Vehicle Types in Autonomous Driving with Heterogeneous Data and Physical Constraints
Abstract
:1. Introduction
- The integration of heterogeneous data sources to improve prediction accuracy and diversity, generating trajectories for different vehicle types. The proposed model leverages various heterogeneous data sources, including high-definition maps, vehicle features, and interaction data between road agents, to generate customized trajectory predictions. By incorporating these contextual cues, the model captures the complex motion dynamics and interaction patterns of different road agents.
- The proposed model uses a CVAE structure, with control variables as the predicted output, and represents the predicted trajectories using a GMM. This approach captures multiple plausible future trajectories and quantifies the uncertainty in the predictions, improving the model’s ability to handle complex traffic environments.
- A bicycle model is incorporated as a Physical Constraint. The model introduces a bicycle model as a Physical Constraint in the learning-based framework for multi-agent trajectory prediction, ensuring the generated trajectories are physically feasible and realistic.
2. Related Works
2.1. Traditional Trajectory Prediction Methods
2.2. Learning-Based Trajectory Prediction Methods
2.3. Incorporating Physical Constraints and Dynamics
3. Methodology
3.1. Problem Definition
3.2. Input Feature Extraction and Encoding
3.2.1. Historical Trajectory Encoding
3.2.2. Vehicle-Specific Features
3.2.3. Map Feature Extraction
3.2.4. Interaction Network
3.3. Prediction Module
3.3.1. Latent Variable Modeling
3.3.2. Decoder with Physical Constraints
- A.
- GRU Module for State Prediction
- B.
- Bivariate Gaussian Distribution for Control Modeling
- C.
- Bicycle Model for Trajectory Generation
4. Experiments
4.1. Datasets
4.2. Implementation Details
4.3. Evaluation Metrics
- Minimum Average Displacement Error (minADE)
- Minimum Final Displacement Error (minFDE)
- Miss Rate at Distance d ()
- Off-Road Rate
- Kernel Density Estimate Negative Log-Likelihood (KDE NLL)
4.4. Results and Analysis
4.4.1. Quantitative Results
4.4.2. Qualitative Analysis
4.4.3. Ablation Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CVAE | Conditional Variational Autoencoder |
RNN | Recurrent Neural Networks |
GAN | Generative Adversarial Networks |
GNN | Graph Neural Networks |
LSTM | Long Short-Term Memory |
MLP | Multi-Layer Perceptron |
CNN | Convolutional Neural Networks |
FC | Fully Connected (Layer) |
GRU | Gated Recurrent Unit |
GMM | Gaussian Mixture Model |
minADE | Minimum Average Displacement Error |
minFDE | Minimum Final Displacement Error |
KDE NLL | Kernel Density Estimation Negative Log-Likelihood |
Appendix A. Online Runtime Performance
References
- Lefèvre, S.; Vasquez, D.; Laugier, C. A survey on motion prediction and risk assessment for intelligent vehicles. ROBOMECH J. 2014, 1, 1. [Google Scholar] [CrossRef]
- Zhan, W.; Sun, L.; Wang, D.; Shi, H.; Clausse, A.; Naumann, M.; Kummerle, J.; Konigshof, H.; Stiller, C.; de La Fortelle, A.; et al. INTERACTION Dataset: An INTERnational, Adversarial and Cooperative moTION Dataset in Interactive Driving Scenarios with Semantic Maps. arXiv 2019, arXiv:1910.03088. [Google Scholar]
- Rudenko, A.; Palmieri, L.; Herman, M.; Kitani, K.M.; Gavrila, D.M.; Arras, K.O. Human motion trajectory prediction: A survey. Int. J. Robot. Res. 2020, 39, 895–935. [Google Scholar] [CrossRef]
- Koopman, P.; Wagner, M. Autonomous vehicle safety: An interdisciplinary challenge. IEEE Intell. Transp. Syst. Mag. 2017, 9, 90–96. [Google Scholar] [CrossRef]
- Markkula, G.; Lin, Y.S.; Srinivasan, A.R.; Billington, J.; Leonetti, M.; Kalantari, A.H.; Yang, Y.; Lee, Y.M.; Madigan, R.; Merat, N. Explaining human interactions on the road by large-scale integration of computational psychological theory. PNAS Nexus 2023, 2, pgad163. [Google Scholar] [CrossRef]
- Chandra, R.; Bera, A.; Manocha, D. Stylepredict: Machine theory of mind for human driver behavior from trajectories. arXiv 2020, arXiv:2011.04816. [Google Scholar]
- Sadigh, D.; Sastry, S.; Seshia, S.A.; Dragan, A.D. Planning for autonomous cars that leverage effects on human actions. In Proceedings of the Robotics: Science and Systems, Ann Arbor, MI, USA, 18–22 June 2016; Volume 2, pp. 1–9. [Google Scholar]
- Alahi, A.; Goel, K.; Ramanathan, V.; Robicquet, A.; Li, F.-F.; Savarese, S. Social lstm: Human trajectory prediction in crowded spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 961–971. [Google Scholar]
- Gupta, A.; Johnson, J.; Fei-Fei, L.; Savarese, S.; Alahi, A. Social gan: Socially acceptable trajectories with generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2255–2264. [Google Scholar]
- Dinneweth, J.; Boubezoul, A.; Mandiau, R.; Espié, S. Multi-agent reinforcement learning for autonomous vehicles: A survey. Auton. Intell. Syst. 2022, 2, 27. [Google Scholar] [CrossRef]
- Huang, Y.; Du, J.; Yang, Z.; Zhou, Z.; Zhang, L.; Chen, H. A survey on trajectory-prediction methods for autonomous driving. IEEE Trans. Intell. Veh. 2022, 7, 652–674. [Google Scholar] [CrossRef]
- Leon, F.; Gavrilescu, M. A review of tracking and trajectory prediction methods for autonomous driving. Mathematics 2021, 9, 660. [Google Scholar] [CrossRef]
- Schubert, R.; Richter, E.; Wanielik, G. Comparison and evaluation of advanced motion models for vehicle tracking. In Proceedings of the 2008 IEEE 11th International Conference on Information Fusion, Cologne, Germany, 30 June–3 July 2008; pp. 1–6. [Google Scholar]
- Ammoun, S.; Nashashibi, F. Real time trajectory prediction for collision risk estimation between vehicles. In Proceedings of the 2009 IEEE 5th International Conference on Intelligent Computer Communication and Processing, Cluj-Napoca, Romania, 27–29 August 2009; pp. 417–422. [Google Scholar]
- Polychronopoulos, A.; Tsogas, M.; Amditis, A.J.; Andreone, L. Sensor fusion for predicting vehicles’ path for collision avoidance systems. IEEE Trans. Intell. Transp. Syst. 2007, 8, 549–562. [Google Scholar] [CrossRef]
- Xiao, W.; Mehdipour, N.; Collin, A.; Bin-Nun, A.Y.; Frazzoli, E.; Tebbens, R.D.; Belta, C. Rule-based optimal control for autonomous driving. In Proceedings of the ACM/IEEE 12th International Conference on Cyber-Physical Systems, Nashville, TN, USA, 19–21 May 2021; pp. 143–154. [Google Scholar]
- Likmeta, A.; Metelli, A.M.; Tirinzoni, A.; Giol, R.; Restelli, M.; Romano, D. Combining reinforcement learning with rule-based controllers for transparent and general decision-making in autonomous driving. Robot. Auton. Syst. 2020, 131, 103568. [Google Scholar] [CrossRef]
- Huang, R.; Zhuo, G.; Xiong, L.; Lu, S.; Tian, W. A Review of Deep Learning-Based Vehicle Motion Prediction for Autonomous Driving. Sustainability 2023, 15, 14716. [Google Scholar] [CrossRef]
- Liu, J.; Mao, X.; Fang, Y.; Zhu, D.; Meng, M.Q.H. A survey on deep-learning approaches for vehicle trajectory prediction in autonomous driving. In Proceedings of the 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 27–31 December 2021; pp. 978–985. [Google Scholar]
- Li, J.; Dai, B.; Li, X.; Xu, X.; Liu, D. A dynamic Bayesian network for vehicle maneuver prediction in highway driving scenarios: Framework and verification. Electronics 2019, 8, 40. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, B.; Yang, S.; Zhao, J.; Deng, W. Vehicle trajectory prediction considering driver uncertainty and vehicle dynamics based on dynamic bayesian network. IEEE Trans. Syst. Man Cybern. Syst. 2022, 53, 689–703. [Google Scholar] [CrossRef]
- Liu, J.; Luo, Y.; Zhong, Z.; Li, K.; Huang, H.; Xiong, H. A probabilistic architecture of long-term vehicle trajectory prediction for autonomous driving. Engineering 2022, 19, 228–239. [Google Scholar] [CrossRef]
- Deo, N.; Trivedi, M.M. Multi-modal trajectory prediction of surrounding vehicles with maneuver based lstms. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Suzhou, China, 26–30 June 2018; pp. 1179–1184. [Google Scholar]
- Park, S.H.; Kim, B.; Kang, C.M.; Chung, C.C.; Choi, J.W. Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Suzhou, China, 26–30 June 2018; pp. 1672–1678. [Google Scholar]
- Tang, C.; Salakhutdinov, R.R. Multiple futures prediction. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2019; Volume 32. [Google Scholar]
- Salzmann, T.; Ivanovic, B.; Chakravarty, P.; Pavone, M. Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XVIII 16. Springer: Berlin/Heidelberg, Germany, 2020; pp. 683–700. [Google Scholar]
- Park, D.; Ryu, H.; Yang, Y.; Cho, J.; Kim, J.; Yoon, K.J. Leveraging future relationship reasoning for vehicle trajectory prediction. arXiv 2023, arXiv:2305.14715. [Google Scholar]
- Li, J.; Ma, H.; Zhan, W.; Tomizuka, M. Generic probabilistic interactive situation recognition and prediction: From virtual to real. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 3218–3224. [Google Scholar]
- Zyner, A.; Worrall, S.; Nebot, E. A Recurrent Neural Network solution for predicting driver intention at unsignalized intersections. IEEE Robot. Autom. Lett. 2018, 3, 1759–1764. [Google Scholar] [CrossRef]
- Sutskever, I. Sequence to Sequence Learning with Neural Networks. arXiv 2014, arXiv:1409.3215. [Google Scholar]
- Altché, F.; de La Fortelle, A. An LSTM network for highway trajectory prediction. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 353–359. [Google Scholar]
- Messaoud, K.; Deo, N.; Trivedi, M.M.; Nashashibi, F. Trajectory prediction for autonomous driving based on multi-head attention with joint agent-map representation. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, 11–17 July 2021; pp. 165–170. [Google Scholar]
- Deo, N.; Wolff, E.; Beijbom, O. Multimodal trajectory prediction conditioned on lane-graph traversals. In Proceedings of the Conference on Robot Learning, PMLR, Auckland, New Zealand, 14–18 December 2022; pp. 203–212. [Google Scholar]
- Schäfer, M.; Zhao, K.; Kummert, A. Caspnet++: Joint multi-agent motion prediction. In Proceedings of the 2024 IEEE Intelligent Vehicles Symposium (IV), Jeju Island, Republic of Korea, 2–5 June 2024; pp. 1294–1301. [Google Scholar]
- Yu, D.; Lee, H.; Kim, T.; Hwang, S.H. Vehicle trajectory prediction with lane stream attention-based LSTMs and road geometry linearization. Sensors 2021, 21, 8152. [Google Scholar] [CrossRef]
- Yoon, Y.; Kim, T.; Lee, H.; Park, J. Road-aware trajectory prediction for autonomous driving on highways. Sensors 2020, 20, 4703. [Google Scholar] [CrossRef]
- Sadeghian, A.; Kosaraju, V.; Sadeghian, A.; Hirose, N.; Rezatofighi, H.; Savarese, S. Sophie: An attentive gan for predicting paths compliant to social and Physical Constraints. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2019; pp. 1349–1358. [Google Scholar]
- Li, J.; Ma, H.; Tomizuka, M. Conditional generative neural system for probabilistic trajectory prediction. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), The Venetian Macao, Macau, 3–8 November 2019; pp. 6150–6156. [Google Scholar]
- Yang, B.; He, C.; Wang, P.; Chan, C.Y.; Liu, X.; Chen, Y. TPPO: A Novel Trajectory Predictor With Pseudo Oracle. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 2846–2859. [Google Scholar] [CrossRef]
- Li, X.; Ying, X.; Chuah, M.C. Grip: Graph-based interaction-aware trajectory prediction. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 3960–3966. [Google Scholar]
- Jeon, H.; Choi, J.; Kum, D. SCALE-Net: Scalable vehicle trajectory prediction network under random number of interacting vehicles via edge-enhanced graph convolutional neural network. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 2095–2102. [Google Scholar]
- Mohamed, A.; Qian, K.; Elhoseiny, M.; Claudel, C. Social-stgcnn: A social spatio-temporal graph convolutional neural network for human trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 14424–14432. [Google Scholar]
- Cui, H.; Nguyen, T.; Chou, F.C.; Lin, T.H.; Schneider, J.; Bradley, D.; Djuric, N. Deep kinematic models for kinematically feasible vehicle trajectory predictions. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 10563–10569. [Google Scholar]
- Ścibior, A.; Lioutas, V.; Reda, D.; Bateni, P.; Wood, F. Imagining the road ahead: Multi-agent trajectory prediction via differentiable simulation. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 720–725. [Google Scholar]
- Zernetsch, S.; Kohnen, S.; Goldhammer, M.; Doll, K.; Sick, B. Trajectory prediction of cyclists using a physical model and an artificial neural network. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV), Gotenburg, Sweden, 19–22 June 2016; pp. 833–838. [Google Scholar]
- Li, J.; Shi, H.; Guo, Y.; Han, G.; Yu, R.; Wang, X. Tragcan: Trajectory prediction of heterogeneous traffic agents in iov systems. IEEE Internet Things J. 2022, 10, 7100–7113. [Google Scholar] [CrossRef]
- Messaoud, K.; Yahiaoui, I.; Verroust-Blondet, A.; Nashashibi, F. Attention based vehicle trajectory prediction. IEEE Trans. Intell. Veh. 2020, 6, 175–185. [Google Scholar] [CrossRef]
- Hochreiter, S. Long Short-term Memory. In Neural Computation; MIT-Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2013; Volume 26. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Chapter 6. [Google Scholar]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Bahdanau, D. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Zhao, S.; Song, J.; Ermon, S. Infovae: Balancing learning and inference in variational autoencoders. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 5885–5892. [Google Scholar]
- Oord, A.v.d.; Li, Y.; Vinyals, O. Representation learning with contrastive predictive coding. arXiv 2018, arXiv:1807.03748. [Google Scholar]
- Sohn, K.; Lee, H.; Yan, X. Learning structured output representation using deep conditional generative models. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2015; Volume 28. [Google Scholar]
- Cho, K. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuScenes: A multimodal dataset for autonomous driving. arXiv 2019, arXiv:1903.11027. [Google Scholar]
- Cui, H.; Radosavljevic, V.; Chou, F.C.; Lin, T.H.; Nguyen, T.; Huang, T.K.; Schneider, J.; Djuric, N. Multimodal trajectory predictions for autonomous driving using deep convolutional networks. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 2090–2096. [Google Scholar]
- Chai, Y.; Sapp, B.; Bansal, M.; Anguelov, D. Multipath: Multiple probabilistic anchor trajectory hypotheses for behavior prediction. arXiv 2019, arXiv:1910.05449. [Google Scholar]
- Phan-Minh, T.; Grigore, E.C.; Boulton, F.A.; Beijbom, O.; Wolff, E.M. Covernet: Multimodal behavior prediction using trajectory sets. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 14074–14083. [Google Scholar]
MinADE1 (m) | MinADE5 (m) | MinADE10 (m) | MinFDE1 (m) | MinFDE5 (m) | MinFDE10 (m) | (%) | (%) | Off-Road Rate (%) | |
---|---|---|---|---|---|---|---|---|---|
Const vel and yaw | 4.61 | 4.61 | 4.61 | 11.21 | 11.21 | 11.21 | 91 | 91 | 14 |
Physics oracle | 3.69 | 3.69 | 3.69 | 9.06 | 9.06 | 9.06 | 88 | 88 | 12 |
MTP [60] | 4.42 | 2.22 | 1.74 | 10.36 | 4.83 | 3.54 | 74 | 67 | 25 |
Multipath [61] | 4.43 | 1.78 | 1.55 | 10.16 | 3.62 | 2.93 | 78 | 76 | 36 |
CoverNet [62] | - | 2.62 | 1.92 | 11.36 | - | - | 76 | 64 | 13 |
Trajectron++ [26] | - | 1.88 | 1.51 | 9.52 | - | - | 70 | 57 | 25 |
MHA-JAM [32] | 3.77 | 1.85 | 1.24 | 8.65 | 3.85 | 2.23 | 59 | 45 | 7 |
PGP [33] | - | 1.27 | 0.94 | 7.17 | - | - | 52 | 34 | 3 |
FRM [27] | - | 1.18 | 0.88 | 6.59 | - | - | 48 | 30 | 2 |
CASPNet++ [34] | 2.74 | 1.18 | 0.93 | 6.19 | - | - | 50 | 30 | 1 |
Our Method (MTP-HPC) | 2.14 | 1.26 | 0.99 | 5.03 | 2.85 | 2.16 | 41 | 32 | 2 |
Type | minADE5 | minFDE5 | KDE NLL5 | ||||||
---|---|---|---|---|---|---|---|---|---|
2 s | 4 s | 6 s | 2 s | 4 s | 6 s | 2 s | 4 s | 6 s | |
BUS | 0.23 | 0.79 | 1.74 | 0.31 | 1.58 | 3.94 | 1.29 | 3.25 | 4.70 |
CAR | 0.18 | 0.60 | 1.30 | 0.23 | 1.18 | 2.98 | 0.17 | 1.82 | 2.98 |
TRAILER | 0.17 | 0.54 | 1.07 | 0.22 | 1.00 | 2.31 | −0.10 | 2.30 | 3.59 |
CONSTRUCTION | 0.05 | 0.13 | 0.20 | 0.06 | 0.19 | 0.32 | −2.66 | −1.09 | −0.40 |
EMERGENCY | 0.51 | 2.58 | 5.00 | 0.69 | 5.26 | 10.09 | 4.47 | 8.52 | 10.38 |
TRUCK | 0.18 | 0.59 | 1.26 | 0.24 | 1.14 | 2.80 | −0.03 | 1.90 | 3.08 |
Base | Map | Physical Constraint | Vehicle Feature | minADE5 | minFDE5 | KDE NLL5 |
---|---|---|---|---|---|---|
✓ | × | × | × | 1.76 | 4.02 | 3.36 |
✓ | ✓ | × | × | 1.41 | 3.13 | 3.29 |
✓ | × | ✓ | × | 1.46 | 3.29 | 3.16 |
✓ | × | × | ✓ | 1.42 | 3.07 | 3.02 |
✓ | ✓ | ✓ | × | 1.29 | 2.90 | 3.03 |
✓ | × | ✓ | ✓ | 1.32 | 2.99 | 2.91 |
✓ | ✓ | × | ✓ | 1.37 | 3.04 | 3.23 |
✓ | ✓ | ✓ | ✓ | 1.26 | 2.85 | 2.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, M.; Ohtani, K.; Ding, M.; Niu, Y.; Zhang, Y.; Takeda, K. Multimodal Trajectory Prediction for Diverse Vehicle Types in Autonomous Driving with Heterogeneous Data and Physical Constraints. Sensors 2024, 24, 7323. https://doi.org/10.3390/s24227323
Ge M, Ohtani K, Ding M, Niu Y, Zhang Y, Takeda K. Multimodal Trajectory Prediction for Diverse Vehicle Types in Autonomous Driving with Heterogeneous Data and Physical Constraints. Sensors. 2024; 24(22):7323. https://doi.org/10.3390/s24227323
Chicago/Turabian StyleGe, Maoning, Kento Ohtani, Ming Ding, Yingjie Niu, Yuxiao Zhang, and Kazuya Takeda. 2024. "Multimodal Trajectory Prediction for Diverse Vehicle Types in Autonomous Driving with Heterogeneous Data and Physical Constraints" Sensors 24, no. 22: 7323. https://doi.org/10.3390/s24227323
APA StyleGe, M., Ohtani, K., Ding, M., Niu, Y., Zhang, Y., & Takeda, K. (2024). Multimodal Trajectory Prediction for Diverse Vehicle Types in Autonomous Driving with Heterogeneous Data and Physical Constraints. Sensors, 24(22), 7323. https://doi.org/10.3390/s24227323