Prediction of Margin of Gait Stability by Using Six-DoF Motion of Pelvis
Abstract
:1. Introduction
2. Gait Data from Open Database
3. Margin of Stability (MoS)
4. Principal Motion Analysis
5. Gait Parameters
6. Results
7. Discussion
7.1. Interpretation of Principal Motions for the Mediolateral MoS
7.1.1. First Principal Motion for Mediolateral MoS
7.1.2. Second Principal Motion for Mediolateral MoS
7.1.3. Third Principal Motion for Mediolateral MoS
7.2. Interpretation of Principal Motions to Estimate Anterior MoS
7.2.1. First Principal Motion for Anterior MoS
7.2.2. Second Principal Motion for Anterior MoS
7.2.3. Third Principal Motion for Anterior MoS
7.3. General Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MoS | Margin of stability |
CoM | Centre of mass |
XCoM | Extended centre of mass |
BoS | Base of support |
References
- Gillespie, L.D.; Robertson, M.C.; Gillespie, W.J.; Sherrington, C.; Gates, S.; Clemson, L.; Lamb, S.E. Interventions for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2012, 2021, CD007146. [Google Scholar] [CrossRef]
- Hof, A.; Gazendam, M.; Sinke, W. The condition for dynamic stability. J. Biomech. 2005, 38, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hof, A.L. The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking. Hum. Mov. Sci. 2008, 27, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Bruijn, S.; Meijer, O.; Beek, P.; Van Dieen, J. Assessing the Stability of Human Locomotion: A Review of Current Measures. J. R. Soc. Interface 2013, 10, 20120999. [Google Scholar] [CrossRef]
- Ohtsu, H.; Yoshida, S.; Minamisawa, T.; Katagiri, N.; Yamaguchi, T.; Takahashi, T.; Yomogida, S.i.; Kanzaki, H. Does the balance strategy during walking in elderly persons show an association with fall risk assessment? J. Biomech. 2020, 103, 109657. [Google Scholar] [CrossRef]
- Soliman, A.; Ribeiro, G.A.; Torres, A.; Wu, L.F.; Rastgaar, M. Gait Phase Estimation of Unsupervised Outdoors Walking Using IMUs and a Linear Regression Model. IEEE Access 2022, 10, 128090–128100. [Google Scholar] [CrossRef]
- Riek, P.M.; Best, A.N.; Wu, A.R. Validation of Inertial Sensors to Evaluate Gait Stability. Sensors 2023, 23, 1547. [Google Scholar] [CrossRef]
- Teufl, W.; Lorenz, M.; Miezal, M.; Taetz, B.; Fröhlich, M.; Bleser, G. Towards Inertial Sensor Based Mobile Gait Analysis: Event-Detection and Spatio-Temporal Parameters. Sensors 2019, 19, 38. [Google Scholar] [CrossRef]
- Zhou, J.; Mao, Q.; Yang, F.; Zhang, J.; Shi, M.; Hu, Z. Development and assessment of artificial intelligence-empowered gait monitoring system using single inertial sensor. Sensors 2024, 24, 5998. [Google Scholar] [CrossRef]
- Contreras, C.; Stanley, E.C.; Deschamps-Prescott, C.; Burnap, S.; Hopkins, M.; Browning, B.; Christensen, J.C. Evaluation of smartphone technology on spatiotemporal gait in older and diseased adult populations. Sensors 2024, 24, 5839. [Google Scholar] [CrossRef]
- Liu, Y.; An, H.; Ma, H.; Wei, Q. Online walking speed estimation based on gait phase and kinematic model for intelligent lower-limb prosthesis. Appl. Sci. 2023, 13, 1893. [Google Scholar] [CrossRef]
- Gao, J.; Gu, P.; Ren, Q.; Zhang, J.; Song, X. Abnormal gait recognition algorithm based on LSTM-CNN fusion network. IEEE Access 2019, 7, 163180–163190. [Google Scholar] [CrossRef]
- Chang, C.W.; Yan, J.L.; Chang, C.N.; Wen, K.A. IMU-based real time four type gait analysis and classification and circuit implementation. In Proceedings of the IEEE Sensors, Dallas, TX, USA, 30 October–2 November 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Soangra, R.; Wen, Y.; Yang, H.; Grant-Beuttler, M. Classifying toe walking gait patterns among children diagnosed with idiopathic toe walking using wearable sensors and machine learning algorithms. IEEE Access 2022, 10, 77054–77067. [Google Scholar] [CrossRef]
- Hwang, S.; Kim, J.; Yang, S.; Moon, H.J.; Cho, K.H.; Youn, I.; Sung, J.K.; Han, S. Machine learning based abnormal gait classification with IMU considering joint impairment. Sensors 2024, 24, 5571. [Google Scholar] [CrossRef]
- Iwasaki, T.; Okamoto, S.; Akiyama, Y.; Yamada, Y. Gait Stability Index Built by Kinematic Information Consistent with the Margin of Stability Along the Mediolateral Direction. IEEE Access 2022, 10, 52832–52839. [Google Scholar] [CrossRef]
- Liu, Z.; Okamoto, S.; Kuroda, T.; Akiyama, Y. Estimating the Margin of Gait Stability in Healthy Elderly Using the Triaxial Kinematic Motion of a Single Body Feature. Appl. Sci. 2024, 14, 3067. [Google Scholar] [CrossRef]
- Park, F.C.; Jo, K. Movement Primitives and Principal Component Analysis. In On Advances in Robot Kinematics; Lenarčič, J., Galletti, C., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 421–430. [Google Scholar]
- Mah, C.D.; Hulliger, M.; Lee, R.G.; O’Callaghan, I.S. Quantitative Analysis of Human Movement Synergies: Constructive Pattern Analysis for Gait. J. Mot. Behav. 1994, 26, 83–102. [Google Scholar] [CrossRef]
- Mishima, K.; Kanata, S.; Nakanishi, H.; Horiguchi, Y.; Sawaragi, T. Extraction of Similarities and Differences in Human Behavior using Singular Value Decomposition. Proc. Jpn. Jt. Autom. Control. Conf. 2009, 52, 39–44. [Google Scholar] [CrossRef]
- Funato, T.; Aoi, S.; Oshima, H.; Tsuchiya, K. Variant and invariant patterns embedded in human locomotion through whole body kinematic coordination. Exp. Brain Res. 2010, 205, 497–511. [Google Scholar] [CrossRef]
- Vlutters, M.; Van Asseldonk, E.; Van der Kooij, H. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking. J. Exp. Biol. 2016, 219, 1514–1523. [Google Scholar] [CrossRef]
- Wang, Y.; Srinivasan, M. Stepping in the direction of the fall: The next foot placement can be predicted from current upper body state in steady-state walking. Biol. Lett. 2014, 10, 20140405. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Hida, N.; Nakajima, K.; Fujimoto, M.; Mochimaru, M. AIST Gait Database 2019; AIST: Tokyo, Japan, 2019. [Google Scholar]
- Inai, T.; Kobayashi, Y.; Sudo, M.; Yamashiro, Y.; Ueda, T. Errors in estimating lower-limb joint angles and moments during walking based on pelvic accelerations: Influence of virtual inertial measurement unit’s frontal plane misalignment. Sensors 2024, 24, 5096. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, W.S. Center of mass of the human body helps in analysis of balance and movement. MOJ Appl. Bionics Biomech. 2018, 2, 144–148. [Google Scholar] [CrossRef]
- Davis, R.B.; Õunpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Artec 3D. Available online: https://www.artec3d.com/ja/3d-models/human-skeleton-hd (accessed on 14 November 2024).
- Akiyama, Y.; Kuboki, Y.; Okamoto, S.; Yamada, Y. Novel approach to analyze all-round kinematic stability during curving steps. IEEE Access 2023, 11, 10326–10335. [Google Scholar] [CrossRef]
- Simonet, A.; Fourcade, P.; Loete, F.; Delafontaine, A.; Yiou, E. Evaluation of the Margin of Stability during Gait Initiation in Young Healthy Adults, Elderly Healthy Adults and Patients with Parkinson’s Disease: A Comparison of Force Plate and Markerless Motion Capture Systems. Sensors 2024, 24, 3322. [Google Scholar] [CrossRef] [PubMed]
- Harro, C.; Alderink, G.; Hickox, L.; Zeitler, D.W.; Avery, M.; Daman, C.; Laker, D. Dynamic Measures of Balance during Obstacle-Crossing in Self-Selected Gait in Individuals with Mild-to-Moderate Parkinson’s Disease. Appl. Sci. 2024, 14, 1271. [Google Scholar] [CrossRef]
- Alamoudi, R.; Alamoudi, M. Development of linear regression models to estimate the margin of stability based on spatio-temporal gait parameters. IEEE Access 2020, 8, 19853–19859. [Google Scholar] [CrossRef]
- Kuroda, T.; Okamoto, S.; Akiyama, Y. Anterior and mediolateral dynamic gait stabilities attributed to different gait parameters in different age groups. J. Biomech. Sci. Eng. 2023, 19, 23–00183. [Google Scholar] [CrossRef]
- Hak, L.; Houdijk, H.; Steenbrink, F.; Mert, A.; van der Wurff, P.; Beek, P.J.; van Dieën, J.H. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations. Gait Posture 2012, 36, 260–264. [Google Scholar] [CrossRef]
- Hak, L.; Houdijk, H.; Beek, P.J.; van Dieën, J.H. Steps to take to enhance gait stability: The effect of stride frequency, stride length, and walking speed on local dynamic stability and margins of stability. PLoS ONE 2013, 8, e82842. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Masani, K. Effects of age on dynamic balance measures and their correlation during walking across the adult lifespan. Sci. Rep. 2022, 12, 14301. [Google Scholar] [CrossRef] [PubMed]
- Bonnefoy-Mazure, A.; Armand, S. Normal gait. In Orthopedic Management of Children with Cerebral Palsy: A Comprehensive Approach; Canavese, F., Deslandes, J., Eds.; Nova: Hauppauge, NY, USA, 2015; Chapter 16. [Google Scholar]
- Chambers, H.G.; Sutherland, D.H. A Practical guide to gait analysis. J. Am. Acad. Orthop. Surg. 2002, 10, 222–231. [Google Scholar] [CrossRef]
- Ohtsu, H.; Yoshida, S.; Minamisawa, T.; Takahashi, T.; Yomogida, S.-I.; Kanzaki, H. Investigation of balance strategy over gait cycle based on margin of stability. J. Biomech. 2019, 95, 109319. [Google Scholar] [CrossRef]
- Iwasaki, T.; Okamoto, S.; Akiyama, Y.; Inagaki, T.; Yamada, Y. Walking motions with high margin-of-stability values. In Proceedings of the IEEE International Conference on Intelligence and Safety for Robotics, Tokoname, Japan, 4–6 March 2021; pp. 224–228. [Google Scholar]
- Kuroda, T.; Okamoto, S.; Akiyama, Y. Verifying the Independence of Anterior and Mediolateral Margin of Gait Stability Indices. In Proceedings of the 2022 IEEE 11th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 18–21 October 2022; pp. 577–579. [Google Scholar] [CrossRef]
- Hallemans, A.; Verbecque, E.; Dumas, R.; Cheze, L.; Hamme, A.V.; Robert, T. Developmental changes in spatial margin of stability in typically developing children relate to the mechanics of gait. Gait Posture 2018, 63, 33–38. [Google Scholar] [CrossRef]
- Gill, L.; Huntley, A.; Mansfield, A. Does the margin of stability measure predict medio-lateral stability of gait with a constrained-width base of support? J. Biomech. 2019, 95, 109317. [Google Scholar] [CrossRef]
- Mukaka, M.M. A guide to appropriate use of Correlation coefficient in medical research. Nalawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Young, P.; Dingwell, J. Voluntary changes in step width and step length during human walking affect dynamic margins of stability. Gait Posture 2012, 36, 219–224. [Google Scholar] [CrossRef]
- Arvin, M.; Mazaheri, M.; Hoozemans, M.J.; Pijnappels, M.; Burger, B.J.; Verschueren, S.M.; van Dieën, J.H. Effects of narrow base gait on mediolateral balance control in young and older adults. J. Biomech. 2016, 49, 1264–1267. [Google Scholar] [CrossRef]
- Akiyama, Y.; Toda, H.; Ogura, T.; Okamoto, S.; Yamada, Y. Classification and analysis of the natural corner curving motion of humans based on gait motion. Gait Posture 2018, 60, 15–21. [Google Scholar] [CrossRef]
- Sivakumaran, S.; Schinkel-Ivy, A.; Masani, K.; Mansfield, A. Relationship between margin of stability and deviations in spatiotemporal gait features in healthy young adults. Hum. Mov. Sci. 2018, 57, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Crosbie, J.; Vachalathiti, R. Synchrony of pelvic and hip joint motion during walking. Gait Posture 1997, 6, 237–248. [Google Scholar] [CrossRef]
- Cromwell, R.L. Movement strategies for head stabilization during incline walking. Gait Posture 2003, 17, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Langley, B.; Whelton, C.; Page, R.; Chalmers, O.; Cramp, M.; Morrison, S.C.; Dey, P.; Board, T. Exploring pelvis and thigh movement and coordination patterns during walking in patients after total hip arthroplasty. Gait Posture 2023, 103, 196–202. [Google Scholar] [CrossRef]
- Dean, J.C.; Alexander, N.B.; Kuo, A.D. The effect of lateral stabilization on walking in young and old adults. IEEE Trans. Biomed. Eng. 2007, 54, 1919–1926. [Google Scholar] [CrossRef]
- Hirano, Y.; Yamada, Y.; Akiyama, Y.; Nakamura, H.; Matsui, Y. Preliminary gait analysis of frail versus older adults. J. Phys. Ther. Sci. 2024, 36, 87–93. [Google Scholar] [CrossRef]
- Han, S.K.; Ko, J.B.; Yu, Y.; Hong, J.S.; Ryu, J.C.; Lee, K.K.; Kang, S.J. A comparison of dynamic gait stability between the tyung and elderly female populations using the zero-moment point method. Electronics 2023, 13, 135. [Google Scholar] [CrossRef]
Parameters | Mean |
---|---|
Height (cm) | |
Weight (kg) | |
Minimum foot clearance (m) | |
Maximal mediolateral velocity of CoM (m/s) | |
Maximal anterior velocity of CoM (m/s) | |
Step width (m) | |
Step length (m) | |
Cadence (steps/min) | |
Total single support phase over two steps (%) | |
Mediolateral MoS (m) | |
Anterior MoS (m) |
The Number of Principal Motions | 6-Axis Motions | 3-Axis Translational Velocity | 3-Axis Angular Velocity |
---|---|---|---|
1 | |||
0.94 cm | 1.05 cm | 0.97 cm | |
2 | |||
0.93 cm | 0.98 cm | 0.96 cm | |
3 | |||
0.88 cm | 1.23 cm | 0.94 cm | |
4 | |||
0.88 cm | 1.20 cm | 0.97 cm | |
5 | |||
0.88 cm | 1.24 cm | 0.94 cm |
1st Principal Motion | 2nd Principal Motion | 3rd Principal Motion | |
---|---|---|---|
Minimum foot clearance | - | - | |
Maximal mediolateral velocity of CoM | |||
Maximal anterior velocity of CoM | - | ||
Step width | - | ||
Step length | - | ||
Cadence | - | - | |
Single support phase | |||
Mediolateral MoS | |||
Anterior MoS |
The Number of Principal Motions | 6-Axis Motions | 3-Axis Translational Velocity | 3-Axis Angular Velocity |
---|---|---|---|
1 | |||
0.83 cm | 0.83 cm | 1.28 cm | |
2 | |||
0.82 cm | 0.75 cm | 0.99 cm | |
3 | |||
0.73 cm | 0.73 cm | 1.20 cm | |
4 | |||
0.73 cm | 0.85 cm | 0.99 cm | |
5 | |||
0.74 cm | 0.75 cm | 1.01 cm |
1st Principal Motion | 2nd Principal Motion | 3rd Principal Motion | |
---|---|---|---|
Minimum foot clearance | - | ||
Maximal mediolateral velocity of CoM | - | - | |
Maximal anterior velocity of CoM | - | - | |
Step width | - | - | |
Step length | |||
Cadence | |||
Single support phase | - | ||
Mediolateral MoS | - | - | |
Anterior MoS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuroda, T.; Okamoto, S.; Akiyama, Y. Prediction of Margin of Gait Stability by Using Six-DoF Motion of Pelvis. Sensors 2024, 24, 7342. https://doi.org/10.3390/s24227342
Kuroda T, Okamoto S, Akiyama Y. Prediction of Margin of Gait Stability by Using Six-DoF Motion of Pelvis. Sensors. 2024; 24(22):7342. https://doi.org/10.3390/s24227342
Chicago/Turabian StyleKuroda, Tomohito, Shogo Okamoto, and Yasuhiro Akiyama. 2024. "Prediction of Margin of Gait Stability by Using Six-DoF Motion of Pelvis" Sensors 24, no. 22: 7342. https://doi.org/10.3390/s24227342
APA StyleKuroda, T., Okamoto, S., & Akiyama, Y. (2024). Prediction of Margin of Gait Stability by Using Six-DoF Motion of Pelvis. Sensors, 24(22), 7342. https://doi.org/10.3390/s24227342