AI-Aided Gait Analysis with a Wearable Device Featuring a Hydrogel Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of the PAM-LiCl-MXene Hydrogel
2.3. Preparation of the Triboelectric Layers
2.4. Assembly of the PLM Sensor
2.5. Wearable Device
2.5.1. Circuit Diagram
2.5.2. Device Assembly
2.5.3. Microcontroller
2.5.4. Battery and Resistor Connection
2.5.5. Assembly of the Smart Knee Brace
2.6. Experimental Measurement and Characterization
3. Results and Discussion
3.1. Preparation and Working Mechanism
3.2. Mechanical and Electrical Characterization
3.3. Development of the Deep Learning Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, C.; Lin, W.; He, X.; Zhang, L.; Zhang, M. IMU-based motion capture system for rehabilitation applications: A systematic review. Biomim. Intell. Robot. 2023, 3, 100097. [Google Scholar] [CrossRef]
- Manupibul, U.; Tanthuwapathom, R.; Jarumethitanont, W.; Kaimuk, P.; Limroongreungrat, W.; Charoensuk, W. Integration of force and IMU sensors for developing low-cost portable gait measurement system in lower extremities. Sci. Rep. 2023, 13, 10653. [Google Scholar] [CrossRef] [PubMed]
- Larracy, R.; Phinyomark, A.; Scheme, E. Gait Representation: From Vision-Based to Floor Sensor-Based Gait Recognition. In Proceedings of the 2023 IEEE Sensors Applications Symposium (SAS), Ottawa, ON, Canada, 18–20 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Mao, Y.; Ogata, T.; Ora, H.; Tanaka, N.; Miyake, Y. Estimation of stride-by-stride spatial gait parameters using inertial measurement unit attached to the shank with inverted pendulum model. Sci. Rep. 2021, 11, 1391. [Google Scholar] [CrossRef]
- Qi, M.; Zhang, D.; Guo, Y.; Zhang, H.; Shao, J.; Ma, Y.; Yang, C.; Mao, R. A flexible wearable sensor based on anti-swelling conductive hydrogels for underwater motion posture visualization assisted by deep learning. J. Mater. Chem. A 2024, 12, 16839–16853. [Google Scholar] [CrossRef]
- Xu, A.; Sun, T.; Liu, R.; Li, L.; Gong, Y.; Xiao, Z. Robust hydrogel sensor with good mechanical properties, conductivity, anti-swelling ability, water tolerance and biocompatibility. Green Chem. 2024, 26, 3926–3939. [Google Scholar] [CrossRef]
- Khan, S.A.; Ahmad, H.; Zhu, G.; Pang, H.; Zhang, Y. Three-Dimensional Printing of Hydrogels for Flexible Sensors: A Review. Gels 2024, 10, 187. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wu, B.; Yuan, P.; Liu, Y.; Hu, C. Progress of Research on Conductive Hydrogels in Flexible Wearable Sensors. Gels 2024, 10, 144. [Google Scholar] [CrossRef]
- Guo, W.-Y.; Ma, M.-G. Conductive nanocomposite hydrogels for flexible wearable sensors. J. Mater. Chem. A 2024, 12, 9371–9399. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, T.; Cai, J.; Xu, L.; He, T.; Tian, Y.; Li, L.; Peng, Y.; Lee, C. Wearable Triboelectric Sensors Enabled Gait Analysis and Waist Motion Capture for IoT-Based Smart Healthcare Applications. Adv. Sci. 2022, 9, 2103694. [Google Scholar] [CrossRef]
- Marimon, X.; Mengual, I.; Celis, C.; Portela, A.; Sanz, J.; Herraez, I.; Bellmunt, A. Kinematic Analysis of Human Gait in Healthy Young Adults Using IMU Sensors: Exploring Relevant Machine Learning Features for Clinical Applications. Bioengineering 2024, 11, 105. [Google Scholar] [CrossRef]
- Willi, R.; Werner, C.; Demko, L.; Be, L.; Filli, B.; Zorner, B.; Curt, A.; Bolliger, M. Reliability of patient-specific gait profiles with inertial measurement units during the 2-min walk test in incomplete spinal cord injury. Sci. Rep. 2024, 14, 3049. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Mi, Z.; Shi, L.; Yang, X.; Chen, R.; Luo, X.; Guan, Y. A high-toughness, tailorable, wearable multifunctional sensor based on multisynergistic fabric-hydrogel constructed via dual-function boric acid bridge. Mater. Today Chem. 2023, 33, 101696. [Google Scholar] [CrossRef]
- Yang, T.; Xu, C.; Lu, C.; Ye, Y.; Sun, Z.; Wang, B.; Luo, Z. Conductive polymer hydrogels crosslinked by electrostatic interaction with PEDOT dopant for bioelectronics application. Chem. Eng. J. 2022, 429, 132430. [Google Scholar] [CrossRef]
- Hina, M.; Bashir, S.; Kamran, K.; Iqbal, J.; Ramesh, S.; Ramesh, K. Fabrication of aqueous solid-state symmetric supercapacitors based on self-healable poly (acrylamide)/PEDOT composite hydrogel electrolytes. Mater. Chem. Phys. 2021, 273, 125125. [Google Scholar] [CrossRef]
- Ni, Y.; Zang, X.; Yang, Y.; Gong, Z.; Li, H.; Chen, J.; Wu, C.; Huang, J.; Lai, Y. Environmental Stability Stretchable Organic Hydrogel Humidity Sensor for Respiratory Monitoring with Ultrahigh Sensitivity. Adv. Funct. Mater. 2024, 34, 2402853. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, F.; Li, M.; Zhang, D.; Han, L.; Li, X.; Zhang, Y.; Cao, A.; Shang, Y. Fast gelling, high performance MXene hydrogels for wearable sensors. J. Colloid Interface Sci. 2024, 658, 137–147. [Google Scholar] [CrossRef]
- Chae, A.; Murali, G.; Lee, S.-Y.; Gwak, J.; Kim, S.; Jeong, Y.; Kang, H.; Park, S.; Lee, A.; Koh, D.-Y.; et al. Highly Oxidation-Resistant and Self-Healable MXene-Based Hydrogels for Wearable Strain Sensor. Adv. Funct. Mater. 2023, 33, 2213382. [Google Scholar] [CrossRef]
- Wu, W.; Zeng, Y.P.; Tian, B.; Liang, J. MXene-based Dual Network Hydrogel as Flexible Strain Sensor for Human Actions Recognition. IEEE J. Flex. Electron. 2024, 1, 1. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Xu, L.; Liu, C.-H.; Han, S.-J.; Fu, M.-L.; Yuan, B. MXene/CdS photothermal–photocatalytic hydrogels for efficient solar water evaporation and synergistic degradation of VOC. J. Mater. Chem. A 2024, 12, 10991–11003. [Google Scholar] [CrossRef]
- Zhang, B.; Wong, P.W.; An, A.K. Photothermally enabled MXene hydrogel membrane with integrated solar-driven evaporation and photodegradation for efficient water purification. Chem. Eng. J. 2022, 430, 133054. [Google Scholar] [CrossRef]
- Zeng, W.; Ye, X.; Dong, Y.; Zhang, Y.; Sun, C.; Zhang, T.; Guan, X.; Guo, L. MXene for photocatalysis and photothermal conversion: Synthesis, physicochemical properties, and applications. Coord. Chem. Rev. 2024, 508, 215753. [Google Scholar] [CrossRef]
- Liu, D.; Wang, S.; Wang, H.; Zhang, Z.; Wang, H. A flexible, stretchable and wearable strain sensor based on physical eutectogels for deep learning-assisted motion identification. J. Mater. Chem. B 2024, 12, 6102–6116. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Xu, M.; Yi, W.; Zhang, Z.; Occhipinti, E.; Dong, C.; Ravenscroft, D.; Jung, S.-M.; Lee, S.; Gao, J.; et al. Ultrasensitive textile strain sensors redefine wearable silent speech interfaces with high machine learning efficiency. NPJ Flex. Electron. 2024, 8, 27. [Google Scholar] [CrossRef]
- Zou, J.; Chen, X.; Song, B.; Cui, Y. Bionic Spider Web Flexible Strain Sensor Based on CF-L and Machine Learning. ACS Appl. Mater. Interfaces 2024, 16, 23761–23770. [Google Scholar] [CrossRef]
- Zhou, L.; Fischer, E.; Brahms, C.M.; Granacher, U.; Arnrich, B. DUO-GAIT: A gait dataset for walking under dual-task and fatigue conditions with inertial measurement units. Sci. Data 2023, 10, 543. [Google Scholar] [CrossRef]
- Santos, G.; Wanderley, M.; Tavares, T.; Rocha, A. A multi-sensor human gait dataset captured through an optical system and inertial measurement units. Sci. Data 2022, 9, 545. [Google Scholar] [CrossRef]
- Sotirakis, C.; Su, Z.; Brzezicki, M.; Conway, N.; Tarassenko, L.; FitzGerald, J.; Antoniades, C. Identification of motor progression in Parkinson’s disease using wearable sensors and machine learning. NPJ Park. Dis. 2023, 9, 142. [Google Scholar] [CrossRef] [PubMed]
- Zadka, A.; Rabin, N.; Gazit, E.; Mirelman, A.; Nieuwboer, A.; Rochester, L.; Din, S.; Pelosin, E.; Avanzino, L.; Bloem, B.; et al. A wearable sensor and machine learning estimate step length in older adults and patients with neurological disorders. NPJ Digit. Med. 2024, 7, 142. [Google Scholar] [CrossRef]
- Hang, C.-Z.; Zhao, X.-F.; Xi, S.-Y.; Shang, Y.-H.; Yuan, K.-P.; Yang, F.; Wang, Q.-G.; Wang, J.-C.; Zhang, D.W.; Lu, H.-L. Highly stretchable and self-healing strain sensors for motion detection in wireless human-machine interface. Nano Energy 2020, 76, 105064. [Google Scholar] [CrossRef]
- He, Z.; Hua, H.; Zou, Z.; Shu, L.; Wang, T.; Sun, W.; Xu, X.; Tong, Z. A facilely prepared notch-insensitive nanocomposite organohydrogel-based flexible wearable device for long-term outdoor human motion monitoring and recognition. J. Mater. Chem. C 2023, 11, 2316–2327. [Google Scholar] [CrossRef]
- Weiss, G.M.; Timko, J.L.; Gallagher, C.M.; Yoneda, K.; Schreiber, A.J. Smartwatch-based activity recognition: A machine learning approach. In Proceedings of the 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Las Vegas, NV, USA, 24–27 February 2016; pp. 426–429. [Google Scholar] [CrossRef]
- Ileșan, R.R.; Cordoș, C.-G.; Mihăilă, L.-I.; Fleșar, R.; Popescu, A.-S.; Perju-Dumbravă, L.; Faragó, P. Proof of Concept in Artificial-Intelligence-Based Wearable Gait Monitoring for Parkinson’s Disease Management Optimization. Biosensors 2022, 12, 189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Suresh, L.; Yang, J.; Zhang, X.; Tan, S.C. Augmenting Sensor Performance with Machine Learning Towards Smart Wearable Sensing Electronic Systems. Adv. Intell. Syst. 2022, 4, 2100194. [Google Scholar] [CrossRef]
- Kheirkhahan, M.; Nair, S.; Davoudi, A.; Rashidi, P.; Wanigatunga, A.A.; Corbett, D.B.; Mendoza, T.; Manini, T.M.; Ranka, S. A Smartwatch-Based Framework for Real-Time and Online Assessment and Mobility Monitoring. J. Biomed. Inform. 2019, 89, 29–40. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, S.; D’auria, B.G.; Mahmud, M.A.P.; Adams, S.D.; Long, J.M.; Kong, L.; Kouzani, A.Z. AI-Aided Gait Analysis with a Wearable Device Featuring a Hydrogel Sensor. Sensors 2024, 24, 7370. https://doi.org/10.3390/s24227370
Hasan S, D’auria BG, Mahmud MAP, Adams SD, Long JM, Kong L, Kouzani AZ. AI-Aided Gait Analysis with a Wearable Device Featuring a Hydrogel Sensor. Sensors. 2024; 24(22):7370. https://doi.org/10.3390/s24227370
Chicago/Turabian StyleHasan, Saima, Brent G. D’auria, M. A. Parvez Mahmud, Scott D. Adams, John M. Long, Lingxue Kong, and Abbas Z. Kouzani. 2024. "AI-Aided Gait Analysis with a Wearable Device Featuring a Hydrogel Sensor" Sensors 24, no. 22: 7370. https://doi.org/10.3390/s24227370
APA StyleHasan, S., D’auria, B. G., Mahmud, M. A. P., Adams, S. D., Long, J. M., Kong, L., & Kouzani, A. Z. (2024). AI-Aided Gait Analysis with a Wearable Device Featuring a Hydrogel Sensor. Sensors, 24(22), 7370. https://doi.org/10.3390/s24227370