Temperature and Frequency Dependence of Human Cerebrospinal Fluid Dielectric Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Impedance Measurement
2.3. Functional Model of the Frequency–Temperature-Relevant CSF Dielectric Parameters
2.4. An Exploratory Study of Bioimpedance Techniques for the Identification of CSF Lesions
3. Results
3.1. Influence of Cooling and Reheating Processes on CSF’s Dielectric Characteristics
3.2. Dielectric Parameters of CSF as a Function of Temperature
3.3. A Model Describing the Broadband Frequency–Temperature-Dependent Dielectric Parameters of CSF
3.4. Difference in the Dielectric Parameters of Normal and Pathological CSF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hannan, S.; Faulkner, M.; Aristovich, K.; Avery, J.; Walker, M.C.; Holder, D.S. In vivo imaging of deep neural activity from the cortical surface during hippocampal epileptiform events in the rat brain using electrical impedance tomography. Neuroimage 2020, 209, 116525. [Google Scholar] [CrossRef] [PubMed]
- Abboud, T.; Hahn, G.; Just, A.; Paidhungat, M.; Nazarenus, A.; Mielke, D.; Rohde, V. An insight into electrical resistivity of white matter and brain tumors. Brain Stimul. 2021, 14, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Hannan, S.; Faulkner, M.; Aristovich, K.; Avery, J.; Walker, M.; Holder, D. Imaging fast electrical activity in the brain during ictal epileptiform discharges with electrical impedance tomography. Neuroimage-Clin. 2018, 20, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Ouypornkochagorn, T.; Polydorides, N.; McCann, H. Towards continuous EIT monitoring for hemorrhagic stroke patients. Front. Physiol. 2023, 14, 9. [Google Scholar] [CrossRef] [PubMed]
- Gaudino, M.; Benesch, C.; Bakaeen, F.; DeAnda, A.; Fremes, S.E.; Glance, L.; Messé, S.R.; Pandey, A.; Rong, L.Q.; Amer Heart Assoc Council, C.; et al. Considerations for Reduction of Risk of Perioperative Stroke in Adult Patients Undergoing Cardiac and Thoracic Aortic Operations: A Scientific Statement From the American Heart Association. Circulation 2020, 142, E193–E209. [Google Scholar] [CrossRef]
- Salameh, A.; Dhein, S.; Dähnert, I.; Klein, N. Neuroprotective Strategies during Cardiac Surgery with Cardiopulmonary Bypass. Int. J. Mol. Sci. 2016, 17, 1945. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, D.; Liu, B.; Jin, Z.; Duan, W.; Dong, X.; Fu, F.; Yu, S.; Shi, X. Noninvasive Cerebral Imaging and Monitoring Using Electrical Impedance Tomography During Total Aortic Arch Replacement. J. Cardiothor. Vasc. Anesth. 2018, 32, 2469–2476. [Google Scholar] [CrossRef]
- Latikka, J.; Kuurne, T.; Eskola, H. Conductivity of living intracranial tissues. Phys. Med. Biol. 2001, 46, 1611–1616. [Google Scholar] [CrossRef]
- Koessler, L.; Colnat-Coulbois, S.; Cecchin, T.; Hofmanis, J.; Dmochowski, J.P.; Norcia, A.M.; Maillard, L.G. In-vivo measurements of human brain tissue conductivity using focal electrical current injection through intracerebral multicontact electrodes. Hum. Brain Mapp. 2017, 38, 974–986. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996, 41, 2271–2293. [Google Scholar] [CrossRef]
- Gabriel, C.; Peyman, A.; Grant, E.H. Electrical conductivity of tissue at frequencies below 1 MHz. Phys. Med. Biol. 2009, 54, 4863–4878. [Google Scholar] [CrossRef] [PubMed]
- Peyman, A.; Holden, S.J.; Watts, S.; Perrott, R.; Gabriel, C. Dielectric properties of porcine cerebrospinal tissues at microwave frequencies:in vivo, in vitro and systematic variation with age. Phys. Med. Biol. 2007, 52, 2229–2245. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, C.; Gabriel, S.; Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 1996, 41, 2231–2249. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef]
- Baumann, S.B.; Wozny, D.R.; Kelly, S.K.; Meno, F.M. The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans. Biomed. Eng. 1997, 44, 220–223. [Google Scholar] [CrossRef]
- Lingwood, B.E.; Dunster, K.R.; Healy, G.N.; Colditz, P.B. Effect of cooling and re-warming on cerebral and whole body electrical impedance. Physiol. Meas. 2004, 25, 413–420. [Google Scholar] [CrossRef]
- Thrane, A.S.; Rangroo Thrane, V.; Nedergaard, M. Drowning stars: Reassessing the role of astrocytes in brain edema. Trends Neurosci. 2014, 37, 620–628. [Google Scholar] [CrossRef]
- Gibson, A.; Bayford, R.H.; Holder, D.S. Two-dimensional finite element modelling of the neonatal head. Physiol. Meas. 2000, 21, 45–52. [Google Scholar] [CrossRef]
- Huang, J.C.; Nicholson, C.; Okada, Y.C. Distortion of magnetic evoked fields and surface potentials by conductivity differences at boundaries in brain tissue. Biophys. J. 1990, 57, 1155–1166. [Google Scholar] [CrossRef]
- Lascano, A.M.; Vulliemoz, S.; Lantz, G.; Spinelli, L.; Michel, C.; Seeck, M. A review on non-invasive localisation of focal epileptic activity using EEG source imaging. Epileptologie 2012, 29, 80–89. [Google Scholar]
- Yi, G.S.; Wang, J.; Wei, X.; Deng, B.; Tsang, K.M.; Chan, W.L.; Han, C.X. Effects of extremely low-frequency magnetic fields on the response of a conductance-based neuron model. Int. J. Neural Syst. 2014, 24, 1450007. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, W.; Liu, B.; Wang, L.; Li, K.; Wang, Y.; Ji, Z.; Xu, C.; Shi, X. Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz. Front. Physiol. 2022, 13, 1053233. [Google Scholar] [CrossRef] [PubMed]
- Truong, B.C.; Tuan, H.D.; Fitzgerald, A.J.; Wallace, V.P.; Nguyen, H.T. A dielectric model of human breast tissue in terahertz regime. IEEE Trans. Biomed. Eng. 2015, 62, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Xu, J.; Hu, S.; You, B.; Ma, Q. Effects of lead exposure on blood electrical impedance spectroscopy of mice. Biomed. Eng. Online 2021, 20, 99. [Google Scholar] [CrossRef] [PubMed]
- Gregory, W.D.; Marx, J.J.; Gregory, C.W.; Mikkelson, W.M.; Tjoe, J.A.; Shell, J. The Cole relaxation frequency as a parameter to identify cancer in breast tissue. Med. Phys. 2012, 39, 4167–4174. [Google Scholar] [CrossRef]
- Tsai, J.Y.; Pan, W.; LeMaire, S.A.; Pisklak, P.; Lee, V.V.; Bracey, A.W.; Elayda, M.A.; Preventza, O.; Price, M.D.; Collard, C.D.; et al. Moderate hypothermia during aortic arch surgery is associated with reduced risk of early mortality. J. Thorac. Cardiovasc. Sur. 2013, 146, 662–667. [Google Scholar] [CrossRef]
- Zhbanov, A.; Yang, S. Electrochemical Impedance Characterization of Blood Cell Suspensions—Part 2: Three-Phase Systems With Single-Shelled Particles. IEEE Trans. Biomed. Eng. 2020, 67, 2979–2989. [Google Scholar] [CrossRef]
- Rajasekharan, C.; Girishkumar, C.; Lonappan, A.; Mathew, A.J.; Mathew, K.T. Diagnostic Value of Microwaves in Neurological Disorders. J. Microw. Power Electromagn. Energy 2010, 44, 139–143. [Google Scholar] [CrossRef]
- Zhu, C.Z.; Ting, H.N.; Ng, K.H.; Mun, K.S.; Ong, T.A. Dielectric properties of urine in relation to bladder cancer. Phys. Eng. Sci. Med. 2023, 47, 61–71. [Google Scholar] [CrossRef]
- Kadan-Jamal, K.; Sophocleous, M.; Jog, A.; Desagani, D.; Teig-Sussholz, O.; Georgiou, J.; Avni, A.; Shacham-Diamand, Y. Electrical Impedance Spectroscopy of plant cells in aqueous biological buffer solutions and their modelling using a unified electrical equivalent circuit over a wide frequency range: 4Hz to 20 GHz. Biosens. Bioelectron. 2020, 168, 112485. [Google Scholar] [CrossRef]
- Basey-Fisher, T.H.; Guerra, N.; Triulzi, C.; Gregory, A.; Hanham, S.M.; Stevens, M.M.; Maier, S.A.; Klein, N. Microwaving blood as a non-destructive technique for haemoglobin measurements on microlitre samples. Adv. Healthc. Mater. 2014, 3, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Pedro, B.G.; Marcôndes, D.W.C.; Bertemes-Filho, P. Analytical Model for Blood Glucose Detection Using Electrical Impedance Spectroscopy. Sensors 2020, 20, 6928. [Google Scholar] [CrossRef] [PubMed]
Characteristic Parameters | Slope (Ω/°C) | Constant Term (Ω) | Coefficient of Determination (R2) |
---|---|---|---|
(Ω) | −9.836 | 795.172 | 0.990 |
(Ω) | −9.758 | 770.002 | 0.990 |
(Hz) | 3,007,513.102 | 82,067,882.929 | 0.989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Zhu, M.; Liu, B.; Li, W.; Wang, Y.; Li, J.; Guo, Q.; Du, F.; Xu, C.; Shi, X. Temperature and Frequency Dependence of Human Cerebrospinal Fluid Dielectric Parameters. Sensors 2024, 24, 7394. https://doi.org/10.3390/s24227394
Wang W, Zhu M, Liu B, Li W, Wang Y, Li J, Guo Q, Du F, Xu C, Shi X. Temperature and Frequency Dependence of Human Cerebrospinal Fluid Dielectric Parameters. Sensors. 2024; 24(22):7394. https://doi.org/10.3390/s24227394
Chicago/Turabian StyleWang, Weice, Mingxu Zhu, Benyuan Liu, Weichen Li, Yu Wang, Junyao Li, Qingdong Guo, Fang Du, Canhua Xu, and Xuetao Shi. 2024. "Temperature and Frequency Dependence of Human Cerebrospinal Fluid Dielectric Parameters" Sensors 24, no. 22: 7394. https://doi.org/10.3390/s24227394
APA StyleWang, W., Zhu, M., Liu, B., Li, W., Wang, Y., Li, J., Guo, Q., Du, F., Xu, C., & Shi, X. (2024). Temperature and Frequency Dependence of Human Cerebrospinal Fluid Dielectric Parameters. Sensors, 24(22), 7394. https://doi.org/10.3390/s24227394