The Impact of the Natural Level of Blood Biochemicals on Electroencephalographic Markers in Healthy People
Abstract
:1. Introduction
1.1. The Impact of External Factors on EEG Markers
1.2. The Impact of Blood Biomarkers on EEG Markers
1.3. The Rationale for Investigating Blood Biomarkers in Healthy People
2. Materials and Methods
2.1. Participants
2.2. Study Protocol
2.3. EEG Recordings
2.4. EEG Processing
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
- The complexity of the EEG signals indicated by the nonlinear dynamics marker HFD is more sensitive to the natural level of blood biomarkers than the EEG power. Only one of the four linear EEG power markers was correlated with one biomarker (ABP with protein). One nonlinear EEG marker, HFD, was correlated with four blood biomarkers (protein, lipoprotein, C-reactive protein, and cystatin C).
- The nature of the relationship between blood biomarkers and EEG signals differs in signal power and complexity. The level of EEG power, indicated by ABP, increased with a higher level of protein. The complexity of the brain reflected by HFD decreased with enhanced levels of protein, lipoprotein, C-reactive protein, and cystatin C.
- The impact of the natural level of blood biomarkers on EEG in healthy people, despite being statistically significant for some blood biomarkers, is rather weak. The correlation coefficients between the EEG markers and the blood biomarkers were lower than 0.4. The impact on EEG increased with the imbalance in blood chemicals.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schomer, D.L.; da Silva, F.H.L. (Eds.) Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 7th ed.; Oxford Academic: New York, NY, USA, 2017; pp. 433–554. Available online: https://academic.oup.com/book/35515 (accessed on 1 October 2024).
- Knott, V.; Mahoney, C.; Kennedy, S.; Evans, K. EEG power, frequency, asymmetry and coherence in male depression. Psychiatry Res. Neuroimaging 2001, 106, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Kesić, S.; Spasić, S.Z. Application of Higuchi’s fractal dimension from basic to clinical neurophysiology: A review. Comput. Methods Programs Biomed. 2016, 133, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, M.; Lass, J.; Hinrikus, H. Single channel EEG analysis for detection of depression. Biomed. Signal Process. Control 2017, 31, 391–397. [Google Scholar] [CrossRef]
- Värbu, K.; Muhammad, N.; Muhammad, Y. Past, Present, and Future of EEG-Based BCI Applications. Sensors 2022, 22, 3331. [Google Scholar] [CrossRef] [PubMed]
- Salinsky, M.C.; Oken, B.S.; Morehead, L. Test-retest reliability in EEG frequency analysis. Electroencephalogr. Clin. Neurophysiol. 1991, 79, 382–392. [Google Scholar] [CrossRef]
- Burgess, A.; Gruzelier, J. Individual reliability of amplitude distribution in topographical mapping of EEG. Electroencephalogr. Clin. Neurophysiol. 1993, 86, 219–223. [Google Scholar] [CrossRef]
- Tenke, C.E.; Kayser, J.; Alvarenga, J.E.; Abraham, K.S.; Warner, V.; Talati, A.; Weissman, M.M.; Bruder, G.E. Temporal stability of posterior EEG alpha over twelve years. Clin. Neurophysiol. 2018, 129, 1410–1417. [Google Scholar] [CrossRef]
- Põld, T.; Päeske, L.; Hinrikus, H.; Lass, J.; Bachmann, M. Long-term stability of resting state EEG-based linear and nonlinear measures. Int. J. Psychophysiol. 2021, 159, 83–87. [Google Scholar] [CrossRef]
- Lopez, K.L.; Monachino, A.D.; Vincent, K.M.; Peck, F.C.; Gabard-Durnam, L.J. Stability, change, and reliable individual differences in electroencephalography measures: A lifespan perspective on progress and opportunities. Neuroimage 2023, 275, 120116. [Google Scholar] [CrossRef]
- Wada, Y.; Takizawa, Y.; Jiang, Z.Y.; Yamaguchi, N. Gender differences in quantitative EEG at rest and during photic stimulation in normal young adults. Clin. Electroencephalogr. 1994, 25, 81–85. [Google Scholar] [CrossRef]
- Miraglia, F.; Vecchio, F.; Rossini, P.M. Searching for signs of aging and dementia in EEG through network analysis. Behav. Brain Res. 2017, 317, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Catrambone, V.; Greco, A.; Averta, G.; Bianchi, M.; Valenza, G.; Scilingo, E.P. Predicting Object-Mediated Gestures from Brain Activity: An EEG Study on Gender Differences. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Hellerstedt, R.; Moccia, A.; Brunskill, C.M.; Bowman, H.; Bergström, Z.M. Aging reduces EEG markers of recognition despite intact performance: Implications for forensic memory detection. Cortex 2021, 140, 80–97. [Google Scholar] [CrossRef] [PubMed]
- Penalba-Sánchez, L.; Silva, G.; Crook-Rumsey, M.; Sumich, A.; Rodrigues, P.M.; Oliveira-Silva, P.; Cifre, I. Classification of Sleep Quality and Aging as a Function of Brain Complexity: A Multiband Non-Linear EEG Analysis. Sensors 2024, 24, 2811. [Google Scholar] [CrossRef] [PubMed]
- Lukas, S.E.; Mendelson, J.H.; Woods, B.T.; Mello, N.K.; Teoh, S.K. Topographic distribution of EEG alpha activity during ethanol-induced intoxication in women. J. Stud. Alcohol. Drugs 1989, 50, 176. [Google Scholar] [CrossRef]
- Kähkönen, S.; Kesäniemi, M.; Nikouline, V.V.; Karhu, J.; Ollikainen, M.; Holi, M.; Ilmoniemi, R.J. Ethanol modulates cortical activity: Direct evidence with combined TMS and EEG. Neuroimage 2001, 14, 322–328. [Google Scholar] [CrossRef]
- Siepmann, M.; Kirch, W. Effects of caffeine on topographic quantitative EEG. Neuropsychobiology 2002, 45, 161–166. [Google Scholar] [CrossRef]
- Darmani, G.; Bergmann, T.O.; Zipser, C.; Baur, D.; Müller-Dahlhaus, F.; Ziemann, U. Effects of antiepileptic drugs on cortical excitability in humans: A TMS-EMG and TMS-EEG study. Hum. Brain Mapp. 2019, 40, 1276–1289. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, B.; Shen, C.; Sahakian, B.J.; Li, Z.; Zhang, W.; Zhao, Y.; Li, Y.; Feng, J.; Cheng, W. Associations of Dietary Patterns with Brain Health from Behavioral, Neuroimaging, Biochemical and Genetic Analyses. Nat. Ment. Health 2024, 2, 535–552. [Google Scholar] [CrossRef]
- Sutter, R.; Pang, T.; Kaplan, P.W. C17EEG Metabolic Disorders, Intoxications, and Epileptic Encephalopathies. In Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 7th ed.; Schomer, D.L., da Silva, F.H.L., Eds.; Oxford Academic: New York, NY, USA, 2017; pp. 433–554. [Google Scholar] [CrossRef]
- Blaabjerg, L.; Juhl, C.B. Hypoglycemia-Induced Changes in the Electroencephalogram: An Overview. J. Diabetes Sci. Technol. 2016, 10, 1259–1267. [Google Scholar] [CrossRef]
- Berger, H. Das Elektrenkephalogramm des Menschen. Arch. Psychiatr. Nervenkr. 1937, 106, 165–187. [Google Scholar] [CrossRef]
- Wilson, W.P.; Short, M.J.; Deiss, W.P. The relationship of glucagon and EEG patterns in hypoglycemia. J. Psychiatr. Res. 1965, 3, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C. EEG manifestations in metabolic encephalopathy. Acta Neurol. Taiwanica 2005, 14, 151–161. (In Chinese) [Google Scholar]
- An, Y.J.; Jung, K.Y.; Kim, S.M.; Lee, C.; Kim, D.W. Effects of blood glucose levels on resting-state EEG and attention in healthy volunteers. J. Clin. Neurophysiol. 2015, 32, 51–56. [Google Scholar] [CrossRef]
- Farabi, S.S.; Carley, D.W.; Quinn, L. EEG power and glucose fluctuations are coupled during sleep in young adults with type 1 diabetes. Clin. Neurophysiol. 2016, 127, 2739–2746. [Google Scholar] [CrossRef]
- Walker, C.P.; Buse, J.B.; Frohlich, F. Experimental increase of blood glucose alters resting state EEG measures of excitation-inhibition balance. Exp. Physiol. 2021, 106, 803–811. [Google Scholar] [CrossRef]
- Pramming, S.; Thorsteinsson, B.; Stigsby, B.; Binder, C. Glycaemic threshold for changes in electroencephalograms during hypoglycaemia in patients with insulin dependent diabetes. Br. Med. J. Clin. Res. Ed. 1988, 296, 665–667. [Google Scholar] [CrossRef] [PubMed]
- Journel, M.; Chaumontet, C.; Darcel, N.; Fromentin, G.; Tomé, D. Brain responses to high-protein diets. Adv. Nutr. 2012, 3, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Bronzino, J.D.; Stisser, P.; Forbes, W.B.; Tracy, C.; Resnick, O.; Morgane, P.J. Power spectral analysis of the EEG following protein malnutrition. Brain Res. Bull. 1980, 5, 51–60. [Google Scholar] [CrossRef]
- Bosch-Bayard, J.; Razzaq, F.A.; Lopez-Naranjo, C.; Wang, Y.; Li, M.; Galan-Garcia, L.; Calzada-Reyes, A.; Virues-Alba, T.; Rabinowitz, A.G.; Suarez-Murias, C.; et al. Early protein energy malnutrition impacts life-long developmental trajectories of the sources of EEG rhythmic activity. Neuroimage 2022, 254, 119144. [Google Scholar] [CrossRef]
- Raulin, A.C.; Martens, Y.A.; Bu, G. Lipoproteins in the Central Nervous System: From Biology to Pathobiology. Annu. Rev. Biochem. 2022, 91, 731–759. [Google Scholar] [CrossRef] [PubMed]
- Power, M.C.; Rawlings, A.; Sharrett, A.R.; Bandeen-Roche, K.; Coresh, J.; Ballantyne, C.M.; Pokharel, Y.; Michos, E.D.; Penman, A.; Alonso, A.; et al. Association of midlife lipids with 20-year cognitive change: A cohort study. Alzheimers Dement. 2018, 14, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Jin, U.; Park, S.J.; Park, S.M. Cholesterol Metabolism in the Brain and Its Association with Parkinson’s Disease. Exp. Neurobiol. 2019, 28, 554–567. [Google Scholar] [CrossRef] [PubMed]
- Hanin, A.; Baudin, P.; Demeret, S.; Roussel, D.; Lecas, S.; Teyssou, E.; Damiano, M.; Luis, D.; Lambrecq, V.; Frazzini, V.; et al. Disturbances of brain cholesterol metabolism: A new excitotoxic process associated with status epilepticus. Neurobiol. Dis. 2021, 154, 105346. [Google Scholar] [CrossRef] [PubMed]
- Chali, F.; Djelti, F.; Eugene, E.; Valderrama, M.; Marquer, C.; Aubourg, P.; Duykaerts, C.; Miles, R.; Cartier, N.; Navarro, V. Inhibiting cholesterol degradation induces neuronal sclerosis and epileptic activity in mouse hippocampus. Eur. J. Neurosci. 2015, 41, 1345–1355. [Google Scholar] [CrossRef]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Zhong, R.; Chen, Q.; Li, M.; Zhang, X.; Lin, W. Elevated Blood C-Reactive Protein Levels in Patients with Epilepsy: A Systematic Review and Meta-Analysis. Front. Neurol. 2019, 10, 974. [Google Scholar] [CrossRef]
- Alapirtti, T.; Waris, M.; Fallah, M.; Soilu-Hänninen, M.; Mäkinen, R.; Kharazmi, E.; Peltola, J. C-reactive protein and seizures in focal epilepsy: A video-electroencephalographic study. Epilepsia 2012, 53, 790–796. [Google Scholar] [CrossRef]
- Levy, E.; Jaskolski, M.; Grubb, A. The role of cystatin C in cerebral amyloid angiopathy and stroke: Cell biology and animal models. Brain Pathol. 2006, 16, 60–70. [Google Scholar] [CrossRef]
- Mi, W.; Pawlik, M.; Sastre, M.; Jung, S.S.; Radvinsky, D.S.; Klein, A.M.; Sommer, J.; Schmidt, S.D.; Nixon, R.A.; Mathews, P.M.; et al. Cystatin C inhibits amyloid-beta deposition in Alzheimer’s disease mouse models. Nat. Genet. 2007, 39, 1440–1442. [Google Scholar] [CrossRef]
- Kaeser, S.A.; Herzig, M.C.; Coomaraswamy, J.; Kilger, E.; Selenica, M.L.; Winkler, D.T.; Staufenbiel, M.; Levy, E.; Grubb, A.; Jucker, M. Cystatin C modulates cerebral beta-amyloidosis. Nat. Genet. 2007, 39, 1437–1439. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xu, J.; Zhao, M.; Wu, J.; Mei, Y.; Zhou, Q.; Zhao, J.; Li, Y.; Yang, M.; Xu, Q. Serum cystatin C and mild cognitive impairment: The mediating role of glucose homeostasis. Front. Aging Neurosci. 2023, 15, 1102762. [Google Scholar] [CrossRef] [PubMed]
- Päeske, L.; Uudeberg, T.; Hinrikus, H.; Lass, J.; Bachmann, M. Correlation between electroencephalographic markers in the healthy brain. Sci Rep. 2023, 13, 6307. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Phys. D Nonlinear Phenom. 1988, 31, 277–283. [Google Scholar] [CrossRef]
- Bachmann, M.; Päeske, L.; Kalev, K.; Aarma, K.; Lehtmets, A.; Ööpik, P.; Lass, J.; Hinrikus, H. Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis. Comput. Methods Programs Biomed. 2018, 155, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Zappasodi, F.; Marzetti, L.; Olejarczyk, E.; Tecchio, F.; Pizzella, V. Age-Related Changes in Electroencephalographic Signal Complexity. PLoS ONE 2015, 10, e0141995. [Google Scholar] [CrossRef]
- Smits, F.M.; Porcaro, C.; Cottone, C.; Cancelli, A.; Rossini, P.M.; Tecchio, F. Electroencephalographic Fractal Dimension in Healthy Ageing and Alzheimer’s Disease. PLoS ONE 2016, 11, e0149587. [Google Scholar] [CrossRef]
- Põld, T.; Päeske, L.; Hinrikus, H.; Lass, J.; Bachmann, M. Temporal stability and correlation of EEG markers and depression questionnaires scores in healthy people. Sci. Rep. 2023, 13, 21996. [Google Scholar] [CrossRef]
- Elmer, B.M.; McAllister, A.K. Major histocompatibility complex class I proteins in brain development and plasticity. Trends Neurosci. 2012, 35, 660–670. [Google Scholar] [CrossRef]
- van Oostrum, M.; Blok, T.M.; Giandomenico, S.L.; Tom Dieck, S.; Tushev, G.; Fürst, N.; Langer, J.D.; Schuman, E.M. The proteomic landscape of synaptic diversity across brain regions and cell types. Cell 2023, 186, 5411–5427.e23. [Google Scholar] [CrossRef]
- Isacson, O.; Brekk, O.R.; Hallett, P.J. Novel Results and Concepts Emerging from Lipid Cell Biology Relevant to Degenerative Brain Aging and Disease. Front. Neurol. 2019, 10, 1053. [Google Scholar] [CrossRef] [PubMed]
- Noble, J.M.; Manly, J.J.; Schupf, N.; Tang, M.X.; Mayeux, R.; Luchsinger, J.A. Association of C-reactive protein with cognitive impairment. Arch. Neurol. 2010, 67, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Felger, J.C.; Haroon, E.; Patel, T.A.; Goldsmith, D.R.; Wommack, E.C.; Woolwine, B.J.; Le, N.A.; Feinberg, R.; Tansey, M.G.; Miller, A.H. What does plasma CRP tell us about peripheral and central inflammation in depression? Mol. Psychiatry 2020, 25, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tatewaki, Y.; Nakase, T.; Liu, Y.; Tomita, N.; Thyreau, B.; Zheng, H.; Muranaka, M.; Takano, Y.; Nagasaka, T.; et al. Impact of hs-CRP concentration on brain structure alterations and cognitive trajectory in Alzheimer’s disease. Front. Aging Neurosci. 2023, 15, 1227325. [Google Scholar] [CrossRef]
- Sandu, A.L.; Staff, R.T.; McNeil, C.J.; Mustafa, N.; Ahearn, T.; Whalley, L.J.; Murray, A.D. Structural brain complexity and cognitive decline in late life—A longitudinal study in the Aberdeen 1936 Birth Cohort. Neuroimage 2014, 100, 558–563. [Google Scholar] [CrossRef]
- Napoli, N.J.; Demas, M.; Stephens, C.L.; Kennedy, K.D.; Harrivel, A.R.; Barnes, L.E.; Pope, A.T. Activation Complexity: A Cognitive Impairment Tool for Characterizing Neuro-isolation. Sci. Rep. 2020, 10, 3909. [Google Scholar] [CrossRef]
- Steinbach, E.J.; Harshman, L.A. Impact of Chronic Kidney Disease on Brain Structure and Function. Front. Neurol. 2022, 13, 797503. [Google Scholar] [CrossRef]
- Lees, J.S.; Rutherford, E.; Stevens, K.I.; Chen, D.C.; Scherzer, R.; Estrella, M.M.; Sullivan, M.K.; Ebert, N.; Mark, P.B.; Shlipak, M.G. Assessment of Cystatin C Level for Risk Stratification in Adults with Chronic Kidney Disease. JAMA Netw. Open 2022, 5, e2238300. [Google Scholar] [CrossRef]
- Jiang, Q.; Guo, Y.; Yang, T.; Li, S.; Hou, Y.; Lin, J.; Xiao, Y.; Ou, R.; Wei, Q.; Shang, H. Cystatin C is associated with poor survival in amyotrophic lateral sclerosis patients. Front. Neurosci. 2024, 17, 1309568. [Google Scholar] [CrossRef]
Markers, Units, Reference Values | Average | StDev | Rel StDev % | ra | rg | |
---|---|---|---|---|---|---|
Gluc mmol/L | 4.1–6.0 | 5.18 | 0.53 | 10.2 | 0.052 | −0.004 |
Prot g/L | 64–87 | 74.53 | 3.51 | 4.7 | −0.136 | 0.172 |
Lp nmol/L | <75 | 55.12 | 77.6 | 140.9 | −0.102 | 0.384 |
HDL mmol/L | >1.2 | 1.66 | 0.49 | 29.7 | 0.002 | −0.518 |
LDL mmol/L | <3 | 4.10 | 1.57 | 38.3 | 0.035 | −0.006 |
CRP mg/L | <5 | 1.79 | 2.94 | 164.8 | 0.143 | 0.160 |
CysC mg/L | 0.47–1.09 | 0.84 | 0.15 | 17.4 | 0.304 | 0.145 |
TBP | 112.3 | 126.2 | 112.3 | −0.212 | 0.136 | |
ABP | 256.8 | 239.0 | 93.07 | −0.058 | 0.189 | |
BBP | 139.5 | 123.6 | 88.5 | 0.014 | −0.124 | |
GBP | 24.8 | 19.4 | 78.2 | 0.013 | −0.118 | |
HFD | 1.47 | 0.11 | 7.48 | −0.040 | −0.061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Päeske, L.; Hinrikus, H.; Lass, J.; Põld, T.; Bachmann, M. The Impact of the Natural Level of Blood Biochemicals on Electroencephalographic Markers in Healthy People. Sensors 2024, 24, 7438. https://doi.org/10.3390/s24237438
Päeske L, Hinrikus H, Lass J, Põld T, Bachmann M. The Impact of the Natural Level of Blood Biochemicals on Electroencephalographic Markers in Healthy People. Sensors. 2024; 24(23):7438. https://doi.org/10.3390/s24237438
Chicago/Turabian StylePäeske, Laura, Hiie Hinrikus, Jaanus Lass, Toomas Põld, and Maie Bachmann. 2024. "The Impact of the Natural Level of Blood Biochemicals on Electroencephalographic Markers in Healthy People" Sensors 24, no. 23: 7438. https://doi.org/10.3390/s24237438
APA StylePäeske, L., Hinrikus, H., Lass, J., Põld, T., & Bachmann, M. (2024). The Impact of the Natural Level of Blood Biochemicals on Electroencephalographic Markers in Healthy People. Sensors, 24(23), 7438. https://doi.org/10.3390/s24237438