A Secure IIoT Environment That Integrates AI-Driven Real-Time Short-Term Active and Reactive Load Forecasting with Anomaly Detection: A Real-World Application
Abstract
:1. Introduction
1.1. Literature Review
1.2. Contribution
- Implementation of a comprehensive and secure IIoT framework that integrates smart data acquisition systems (SDAS) with real-time monitoring, control, and protective measures.
- Deployment of a MariaDB database using structured query language (SQL) queries integrated with phpMyAdmin for efficient management of heterogeneous big data.
- Proposal of an efficient AI model that simultaneously predicts active and reactive power, along with optimized isolation forest models for anomaly detection that consider transient conditions in power consumption.
- Implementation of a real-time load-forecasting AI model (TCN-GRU-attention) on a centralized PC (cloud server) and anomaly detection AI models (optimized isolation forest) on edge devices, including a mini PC and a single-board computer like the Jetson Nano.
- The innovative architecture incorporates advanced AI-driven analytics and robust security measures, enhancing operational efficiency, ensuring data integrity, and significantly improving energy efficiency and management.
2. Methodology
2.1. System Overview
2.2. Sensing Layer
2.3. Edge IIoT Layer
2.4. Centralized IIoT Layer
2.5. Implementation of AI Models
2.5.1. Active and Reactive Load Forecasting
2.5.2. Anomaly Detection
2.6. Model Description
2.6.1. Load Forecasting Model
2.6.2. Anomaly Detection Model
2.6.3. Evaluation Metrics
2.7. Securing the Overall IIoT Infrastructure
3. Experimental Setup
3.1. Experimental Setup of Sensing Layer
3.2. Experimental Setup of Edge IIoT Layer
3.3. Experimental Setup of Centralized IIoT Layer
4. Experimental Results
4.1. Dataset Description
4.2. Performance Evaluation of AI Models
4.2.1. Active and Reactive Load Forecasting
4.2.2. Anomaly Detection
4.3. Security Verification of the Overall IIoT Infrastructure
4.4. Demonstration of Real-World Applications
4.4.1. Real-Time Monitoring, Controlling, Scheduling, and Protective System
4.4.2. Real-Time Active and Reactive Load Forecasting
4.4.3. Real-Time Anomaly Detection
Algorithm 1 Anomaly detection and data insertion in MariaDB |
|
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malik, P.K.; Sharma, R.; Singh, R.; Gehlot, A.; Satapathy, S.C.; Alnumay, W.S.; Pelusi, D.; Ghosh, U.; Nayak, J. Industrial Internet of Things and its applications in industry 4.0: State of the art. Comput. Commun. 2021, 166, 125–139. [Google Scholar] [CrossRef]
- Boyes, H.; Hallaq, B.; Cunningham, J.; Watson, T. The industrial internet of things (IIoT): An analysis framework. Comput. Ind. 2018, 101, 1–12. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, R.; Kumar, A.; Franklin, A.A.; Garg, S.; Singh, S. Blockchain and deep learning for secure communication in digital twin empowered industrial IoT network. IEEE Trans. Netw. Sci. Eng. 2022, 10, 2802–2813. [Google Scholar] [CrossRef]
- Maddikunta, P.K.R.; Pham, Q.V.; Prabadevi, B.; Deepa, N.; Dev, K.; Gadekallu, T.R.; Ruby, R.; Liyanage, M. Industry 5.0: A survey on enabling technologies and potential applications. J. Ind. Inf. Integr. 2022, 26, 100257. [Google Scholar] [CrossRef]
- Akundi, A.; Euresti, D.; Luna, S.; Ankobiah, W.; Lopes, A.; Edinbarough, I. State of Industry 5.0—Analysis and identification of current research trends. Appl. Syst. Innov. 2022, 5, 27. [Google Scholar] [CrossRef]
- Himeur, Y.; Sayed, A.; Alsalemi, A.; Bensaali, F.; Amira, A. Edge AI for Internet of Energy: Challenges and perspectives. Internet Things 2023, 25, 101035. [Google Scholar] [CrossRef]
- Ma, R.; Yang, W.; Guan, X.; Lu, X.; Song, Y.; Chen, D. Covert mmWave communications with finite blocklength against spatially random wardens. IEEE Internet Things J. 2023, 11, 3402–3416. [Google Scholar] [CrossRef]
- De Cian, E.; Sue Wing, I. Global energy consumption in a warming climate. Environ. Resour. Econ. 2019, 72, 365–410. [Google Scholar] [CrossRef]
- Hu, Y.; Man, Y. Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives. Renew. Sustain. Energy Rev. 2023, 182, 113405. [Google Scholar] [CrossRef]
- Dibal, P.Y.; Onwuka, E.N.; Zubair, S.; Nwankwo, E.I.; Okoh, S.; Salihu, B.A.; Mustaphab, H. Processor power and energy consumption estimation techniques in IoT applications: A review. Internet Things 2023, 21, 100655. [Google Scholar] [CrossRef]
- Kwon, K.; Lee, S.; Kim, S. AI-based home energy management system considering energy efficiency and resident satisfaction. IEEE Internet Things J. 2021, 9, 1608–1621. [Google Scholar] [CrossRef]
- Geraldo Filho, P.; Villas, L.A.; Gonçalves, V.P.; Pessin, G.; Loureiro, A.A.; Ueyama, J. Energy-efficient smart home systems: Infrastructure and decision-making process. Internet Things 2019, 5, 153–167. [Google Scholar] [CrossRef]
- Asef, P.; Taheri, R.; Shojafar, M.; Mporas, I.; Tafazolli, R. SIEMS: A secure intelligent energy management system for industrial IoT applications. IEEE Trans. Ind. Inform. 2022, 19, 1039–1050. [Google Scholar] [CrossRef]
- Raval, M.; Bhardwaj, S.; Aravelli, A.; Dofe, J.; Gohel, H. Smart energy optimization for massive IoT using artificial intelligence. Internet Things 2021, 13, 100354. [Google Scholar] [CrossRef]
- Kumar, R.; Malik, A.; Ranga, V. Security concerns over IoT routing using emerging technologies: A review. Trans. Emerg. Telecommun. Technol. 2023, 34, e4798. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuli, S.; Xu, M.; Singh, I.; Singh, K.V.; Lindsay, D.; Tuli, S.; Smirnova, D.; Singh, M.; Jain, U.; et al. Transformative effects of IoT, Blockchain and Artificial Intelligence on cloud computing: Evolution, vision, trends and open challenges. Internet Things 2019, 8, 100118. [Google Scholar] [CrossRef]
- Pourrahmani, H.; Yavarinasab, A.; Monazzah, A.M.H.; Herle, J.V. A review of the security vulnerabilities and countermeasures in the Internet of Things solutions: A bright future for the Blockchain. Internet Things 2023, 23, 100888. [Google Scholar] [CrossRef]
- Rathee, G.; Iqbal, R.; Kerrache, C.A.; Song, H. TrustNextGen: Security Aspects of Trustworthy Next Generation Industrial Internet of Things (IIoT). IEEE Internet Things J. 2024, 11, 25568–25576. [Google Scholar] [CrossRef]
- Miryahyaei, M.; Fartash, M.; Akbari Torkestani, J. Focal Causal Temporal Convolutional Neural Networks: Advancing IIoT Security with Efficient Detection of Rare Cyber-Attacks. Sensors 2024, 24, 6335. [Google Scholar] [CrossRef]
- Lin, Y.H.; Ciou, J.C. A privacy-preserving distributed energy management framework based on vertical federated learning-based smart data cleaning for smart home electricity data. Internet Things 2024, 26, 101222. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, R.; Lin, Z.; Zhang, R.; Cai, Y.; Wu, W.; Wang, J. Improving age of information for covert communication with time-modulated arrays. IEEE Internet Things J. 2024; preprint. [Google Scholar] [CrossRef]
- Selvarajan, S.; Srivastava, G.; Khadidos, A.O.; Khadidos, A.O.; Baza, M.; Alshehri, A.; Lin, J.C.W. An artificial intelligence lightweight blockchain security model for security and privacy in IIoT systems. J. Cloud Comput. 2023, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.M.; Diao, X.; Shi, H.; Ding, H.; Zhou, H.; de Vaulx, C. Trends and challenges in AIoT/IIoT/IoT implementation. Sensors 2023, 23, 5074. [Google Scholar] [CrossRef] [PubMed]
- Peteleaza, D.; Matei, A.; Sorostinean, R.; Gellert, A.; Fiore, U.; Zamfirescu, B.C.; Palmieri, F. Electricity consumption forecasting for sustainable smart cities using machine learning methods. Internet Things 2024, 27, 101322. [Google Scholar] [CrossRef]
- Eren, Y.; Küçükdemiral, İ. A comprehensive review on deep learning approaches for short-term load forecasting. Renew. Sustain. Energy Rev. 2024, 189, 114031. [Google Scholar] [CrossRef]
- Aguiar-Pérez, J.M.; Pérez-Juárez, M.Á. An insight of deep learning based demand forecasting in smart grids. Sensors 2023, 23, 1467. [Google Scholar] [CrossRef]
- Ahmad, N.; Ghadi, Y.; Adnan, M.; Ali, M. Load forecasting techniques for power system: Research challenges and survey. IEEE Access 2022, 10, 71054–71090. [Google Scholar] [CrossRef]
- Hou, H.; Liu, C.; Wang, Q.; Wu, X.; Tang, J.; Shi, Y.; Xie, C. Review of load forecasting based on artificial intelligence methodologies, models, and challenges. Electr. Power Syst. Res. 2022, 210, 108067. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Bhandari, B.; Cheng, L. AI-empowered methods for smart energy consumption: A review of load forecasting, anomaly detection and demand response. Int. J. Precis. Eng. Manuf.-Green Technol. 2024, 11, 963–993. [Google Scholar] [CrossRef]
- Himeur, Y.; Ghanem, K.; Alsalemi, A.; Bensaali, F.; Amira, A. Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives. Appl. Energy 2021, 287, 116601. [Google Scholar] [CrossRef]
- Chatterjee, A.; Ahmed, B.S. IoT anomaly detection methods and applications: A survey. Internet Things 2022, 19, 100568. [Google Scholar] [CrossRef]
- Trilles, S.; Hammad, S.S.; Iskandaryan, D. Anomaly detection based on artificial intelligence of things: A systematic literature mapping. Internet Things 2024, 25, 101063. [Google Scholar] [CrossRef]
- Mudaliar, M.D.; Sivakumar, N. IoT based real time energy monitoring system using Raspberry Pi. Internet Things 2020, 12, 100292. [Google Scholar] [CrossRef]
- Chen, C.Y.; Wu, S.H.; Huang, B.W.; Huang, C.H.; Yang, C.F. Web-based Internet of Things on environmental and lighting control and monitoring system using node-RED, MQTT and Modbus communications within embedded Linux platform. Internet Things 2024, 27, 101305. [Google Scholar] [CrossRef]
- Gozuoglu, A.; Ozgonenel, O.; Gezegin, C. CNN-LSTM Based Deep Learning Application on Jetson Nano: Estimating Electrical Energy Consumption for Future Smart Homes. Internet Things 2024, 26, 101148. [Google Scholar] [CrossRef]
- Wang, X.; Yao, Z.; Papaefthymiou, M. A real-time electrical load forecasting and unsupervised anomaly detection framework. Appl. Energy 2023, 330, 120279. [Google Scholar] [CrossRef]
- Villegas-Ch, W.; García-Ortiz, J.; Sánchez-Viteri, S. Towards Intelligent Monitoring in IoT: AI Applications for Real-Time Analysis and Prediction. IEEE Access 2024, 12, 40368–40386. [Google Scholar] [CrossRef]
- Sadeeq, M.A.; Zeebaree, S.R. Design and implementation of an energy management system based on distributed IoT. Comput. Electr. Eng. 2023, 109, 108775. [Google Scholar]
- Kumar, G.; Kumar, L.; Kumar, S. Multi-objective control-based home energy management system with smart energy meter. Electr. Eng. 2023, 105, 2095–2105. [Google Scholar] [CrossRef]
- Rao, C.K.; Sahoo, S.K.; Yanine, F.F. Design and deployment of a novel Decisive Algorithm to enable real-time optimal load scheduling within an Intelligent Smart Energy Management System based on IoT. 2024; preprint. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, Y.; Fan, S.; Hu, X.; Huang, Y.; Lu, Z.; Liu, Y. Multi-task short-term reactive and active load forecasting method based on attention-LSTM model. Int. J. Electr. Power Energy Syst. 2022, 135, 107517. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Zheng, Y.; Ding, R.; Chen, Y.; Wang, Y.; Cheng, X.; Yue, S. Reactive load prediction based on a long short-term memory neural network. IEEE Access 2020, 8, 90969–90977. [Google Scholar] [CrossRef]
- Liu, F.; Liang, C. Short-term power load forecasting based on AC-BiLSTM model. Energy Rep. 2024, 11, 1570–1579. [Google Scholar] [CrossRef]
- Aurangzeb, K.; Haider, S.I.; Alhussein, M. Individual household load forecasting using bi-directional LSTM network with time-based embedding. Energy Rep. 2024, 11, 3963–3975. [Google Scholar] [CrossRef]
- Bacanin, N.; Jovanovic, L.; Zivkovic, M.; Kandasamy, V.; Antonijevic, M.; Deveci, M.; Strumberger, I. Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural networks. Inf. Sci. 2023, 642, 119122. [Google Scholar] [CrossRef]
- Waheed, W.; Xu, Q. Data-driven short term load forecasting with deep neural networks: Unlocking insights for sustainable energy management. Electr. Power Syst. Res. 2024, 232, 110376. [Google Scholar] [CrossRef]
- Jayashankara, M.; Shah, P.; Sharma, A.; Chanak, P.; Singh, S.K. A novel approach for short-term energy forecasting in smart buildings. IEEE Sens. J. 2023, 23, 5307–5314. [Google Scholar] [CrossRef]
- Giamarelos, N.; Papadimitrakis, M.; Stogiannos, M.; Zois, E.N.; Livanos, N.A.I.; Alexandridis, A. A machine learning model ensemble for mixed power load forecasting across multiple time horizons. Sensors 2023, 23, 5436. [Google Scholar] [CrossRef]
- Luna-Romero, S.F.; Serrano-Guerrero, X.; de Souza, M.A.; Escrivá-Escrivà, G. Enhancing anomaly detection in electrical consumption profiles through computational intelligence. Energy Rep. 2024, 11, 951–962. [Google Scholar] [CrossRef]
- Dissem, M.; Amayri, M.; Bouguila, N. Neural Architecture Search for Anomaly Detection in Time Series Data of Smart Buildings: A Reinforcement Learning Approach for Optimal Autoencoder Design. IEEE Internet Things J. 2024, 11, 18059–18073. [Google Scholar] [CrossRef]
- Copiaco, A.; Himeur, Y.; Amira, A.; Mansoor, W.; Fadli, F.; Atalla, S.; Sohail, S.S. An innovative deep anomaly detection of building energy consumption using energy time-series images. Eng. Appl. Artif. Intell. 2023, 119, 105775. [Google Scholar] [CrossRef]
- Papaioannou, A.; Dimara, A.; Krinidis, S.; Anagnostopoulos, C.N.; Ioannidis, D.; Tzovaras, D. Advanced proactive anomaly detection in multi-pattern home appliances for energy optimization. Internet Things 2024, 26, 101175. [Google Scholar] [CrossRef]
- Cicero, S.; Guarascio, M.; Guerrieri, A.; Mungari, S. A Deep Anomaly Detection System for IoT-Based Smart Buildings. Sensors 2023, 23, 9331. [Google Scholar] [CrossRef] [PubMed]
- Hernández, Á.; Nieto, R.; de Diego-Otón, L.; Pérez-Rubio, M.C.; Villadangos-Carrizo, J.M.; Pizarro, D.; Ureña, J. Detection of anomalies in daily activities using data from smart meters. Sensors 2024, 24, 515. [Google Scholar] [CrossRef]
- Wei, Y.; Jang-Jaccard, J.; Xu, W.; Sabrina, F.; Camtepe, S.; Boulic, M. LSTM-autoencoder-based anomaly detection for indoor air quality time-series data. IEEE Sens. J. 2023, 23, 3787–3800. [Google Scholar] [CrossRef]
- Bin Mofidul, R.; Alam, M.M.; Rahman, M.H.; Jang, Y.M. Real-time energy data acquisition, anomaly detection, and monitoring system: Implementation of a secured, robust, and integrated global IIoT infrastructure with edge and cloud AI. Sensors 2022, 22, 8980. [Google Scholar] [CrossRef]
- Mubarak, H.; Sanjari, M.J.; Stegen, S.; Abdellatif, A. Improved Active and Reactive Energy Forecasting Using a Stacking Ensemble Approach: Steel Industry Case Study. Energies 2023, 16, 7252. [Google Scholar] [CrossRef]
- Dong, H.; Zhu, J.; Li, S.; Wu, W.; Zhu, H.; Fan, J. Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks. Appl. Energy 2023, 329, 120281. [Google Scholar] [CrossRef]
- Baig, M.J.A.; Iqbal, M.T.; Jamil, M.; Khan, J. Design and implementation of an open-Source IoT and blockchain-based peer-to-peer energy trading platform using ESP32-S2, Node-Red and, MQTT protocol. Energy Rep. 2021, 7, 5733–5746. [Google Scholar] [CrossRef]
- Augello, A.; Gallo, P.; Sanseverino, E.R.; Sciabica, G.; Sciumè, G. Certifying battery usage for V2G and second life with a blockchain-based framework. Comput. Netw. 2023, 222, 109558. [Google Scholar] [CrossRef]
- Liu, S.; Xu, T.; Du, X.; Zhang, Y.; Wu, J. A hybrid deep learning model based on parallel architecture TCN-LSTM with Savitzky-Golay filter for wind power prediction. Energy Convers. Manag. 2024, 302, 118122. [Google Scholar] [CrossRef]
- Dai, G.; Luo, S.; Chen, H.; Ji, Y. Efficient Method for Photovoltaic Power Generation Forecasting Based on State Space Modeling and BiTCN. Sensors 2024, 24, 6590. [Google Scholar] [CrossRef] [PubMed]
- Limouni, T.; Yaagoubi, R.; Bouziane, K.; Guissi, K.; Baali, E.H. Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model. Renew. Energy 2023, 205, 1010–1024. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Sun, D.; Jin, K.; Gu, Y. Short-term wind power forecasting based on VMD and a hybrid SSA-TCN-BiGRU network. Appl. Sci. 2023, 13, 9888. [Google Scholar] [CrossRef]
- Hua, H.; Liu, M.; Li, Y.; Deng, S.; Wang, Q. An ensemble framework for short-term load forecasting based on parallel CNN and GRU with improved ResNet. Electr. Power Syst. Res. 2023, 216, 109057. [Google Scholar] [CrossRef]
- Abumohsen, M.; Owda, A.Y.; Owda, M. Electrical load forecasting using LSTM, GRU, and RNN algorithms. Energies 2023, 16, 2283. [Google Scholar] [CrossRef]
- Mahjoub, S.; Chrifi-Alaoui, L.; Marhic, B.; Delahoche, L. Predicting energy consumption using LSTM, multi-layer GRU and drop-GRU neural networks. Sensors 2022, 22, 4062. [Google Scholar] [CrossRef] [PubMed]
- Wan, A.; Chang, Q.; Khalil, A.B.; He, J. Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism. Energy 2023, 282, 128274. [Google Scholar] [CrossRef]
- Xiong, B.; Lou, L.; Meng, X.; Wang, X.; Ma, H.; Wang, Z. Short-term wind power forecasting based on Attention Mechanism and Deep Learning. Electr. Power Syst. Res. 2022, 206, 107776. [Google Scholar] [CrossRef]
- Niu, Z.; Yu, Z.; Tang, W.; Wu, Q.; Reformat, M. Wind power forecasting using attention-based gated recurrent unit network. Energy 2020, 196, 117081. [Google Scholar] [CrossRef]
- Xu, H.; Pang, G.; Wang, Y.; Wang, Y. Deep isolation forest for anomaly detection. IEEE Trans. Knowl. Data Eng. 2023, 35, 12591–12604. [Google Scholar] [CrossRef]
- Wang, J.; Li, X. Abnormal Electricity Detection of Users Based on Improved Canopy-Kmeans and Isolation Forest Algorithms. IEEE Access 2024, 12, 99110–99121. [Google Scholar] [CrossRef]
- Azizi, E.; Beheshti, M.T.; Bolouki, S. Appliance-level anomaly detection in nonintrusive load monitoring via power consumption-based feature analysis. IEEE Trans. Consum. Electron. 2021, 67, 363–371. [Google Scholar] [CrossRef]
Model | Parameters | Values |
---|---|---|
TCN-GRU-Attention | Kernel Size | 3 |
No. of Filters | 32 | |
No. of GRU Units | 64 | |
Learning Rate | 0.001–0.00001 | |
Loss Function | MSE | |
Batch Size | 64 | |
Optimizer | Adam | |
No. of Training Epochs | 200 |
Appliance | n_estimator | Contamination | Threshold |
---|---|---|---|
Mini PC | 200 | 0.0009 | 20 |
PC | 200 | 0.001 | 135 |
Monitors | 200 | 0.0065 | 45 |
Refrigerator | 100 | 0.01 | 150 |
LED Light | 200 | 0.006 | 12 |
Total Power | 100 | 0.0045 | 230 |
Method | MSE | MAE | RMSE |
---|---|---|---|
LSTM | 0.0214 | 0.1123 | 0.1465 |
GRU | 0.0207 | 0.1100 | 0.1440 |
TCN | 0.0187 | 0.1060 | 0.1367 |
Stacked-LSTM | 0.0229 | 0.1136 | 0.1513 |
Stacked-GRU | 0.0193 | 0.1064 | 0.1392 |
CNN-LSTM | 0.0270 | 0.1213 | 0.1644 |
CNN-GRU | 0.0229 | 0.1121 | 0.1513 |
LSTM-Attention | 0.0215 | 0.1136 | 0.1469 |
GRU-Attention | 0.0212 | 0.1149 | 0.1457 |
TCN-GRU-Attention | 0.0183 | 0.1022 | 0.1354 |
Method | MSE | MAE | RMSE |
---|---|---|---|
LSTM | 0.0255 | 0.1224 | 0.1599 |
GRU | 0.0245 | 0.1188 | 0.1565 |
TCN | 0.0225 | 0.1180 | 0.1501 |
Stacked-LSTM | 0.0250 | 0.1184 | 0.1584 |
Stacked-GRU | 0.0216 | 0.1140 | 0.1471 |
CNN-LSTM | 0.0279 | 0.1229 | 0.1671 |
CNN-GRU | 0.0257 | 0.1165 | 0.1604 |
LSTM-Attention | 0.0231 | 0.1167 | 0.1521 |
GRU-Attention | 0.0221 | 0.1146 | 0.1487 |
TCN-GRU-Attention | 0.0202 | 0.1077 | 0.1422 |
Appliance | Precision | Recall | F1 Score | Accuracy |
---|---|---|---|---|
Mini PC | 0.9646 | 1 | 0.9820 | 1 |
PC | 1 | 0.9298 | 0.9636 | 0.9999 |
Monitors | 0.9437 | 1 | 0.9711 | 1 |
Refrigerator | 1 | 1 | 1 | 1 |
LED Light | 0.8500 | 1 | 0.9189 | 1 |
Total Power | 0.9286 | 0.9778 | 0.9526 | 0.9999 |
Average Performance Metrics | 0.95 | 0.98 | 0.96 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joha, M.I.; Rahman, M.M.; Nazim, M.S.; Jang, Y.M. A Secure IIoT Environment That Integrates AI-Driven Real-Time Short-Term Active and Reactive Load Forecasting with Anomaly Detection: A Real-World Application. Sensors 2024, 24, 7440. https://doi.org/10.3390/s24237440
Joha MI, Rahman MM, Nazim MS, Jang YM. A Secure IIoT Environment That Integrates AI-Driven Real-Time Short-Term Active and Reactive Load Forecasting with Anomaly Detection: A Real-World Application. Sensors. 2024; 24(23):7440. https://doi.org/10.3390/s24237440
Chicago/Turabian StyleJoha, Md. Ibne, Md Minhazur Rahman, Md Shahriar Nazim, and Yeong Min Jang. 2024. "A Secure IIoT Environment That Integrates AI-Driven Real-Time Short-Term Active and Reactive Load Forecasting with Anomaly Detection: A Real-World Application" Sensors 24, no. 23: 7440. https://doi.org/10.3390/s24237440
APA StyleJoha, M. I., Rahman, M. M., Nazim, M. S., & Jang, Y. M. (2024). A Secure IIoT Environment That Integrates AI-Driven Real-Time Short-Term Active and Reactive Load Forecasting with Anomaly Detection: A Real-World Application. Sensors, 24(23), 7440. https://doi.org/10.3390/s24237440