Minimum Electromyography Sensor Set Needed to Identify Age-Related Impairments in the Neuromuscular Control of Walking Using the Dynamic Motor Control Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection and Processing
2.3. Data Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Dynamic Motor Control Indices | Number of Muscle Synergies | |||||
---|---|---|---|---|---|---|
11 Muscles | 8 Muscles | 5 Muscles | 11 Muscles | 8 Muscles | 5 Muscles | |
Young | 100 ± 10 | 100 ± 10 | 100 ± 10 | 2.78 ± 0.43 | 2.89 ± 0.32 | 2.94 ± 0.42 |
Young-Old | 96.43 ± 10.79 | 95.49 ± 10.82 | 96.40 ± 10.69 | 2.92 ± 0.49 | 2.92 ± 0.49 | 2.85 ± 0.38 |
Old-Old | 88.86 ± 9.67 | 90.35 ± 7.31 | 95.52 ± 6.74 | 3.00 ± 0.70 | 3.20 ± 0.44 | 3.00 ± 0.00 |
References
- 65 and Older Population Grows Rapidly as Baby Boomers Age. Available online: https://www.census.gov/newsroom/press-releases/2020/65-older-population-grows.html (accessed on 9 March 2022).
- Rozand, V.; Sundberg, C.W.; Hunter, S.K.; Smith, A.E. Age-Related Deficits in Voluntary Activation: A Systematic Review and Meta-Analysis. Med. Sci. Sports Exerc. 2020, 52, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Gimmon, Y.; Rashad, H.; Kurz, I.; Plotnik, M.; Riemer, R.; Debi, R.; Shapiro, A.; Melzer, I. Gait Coordination Deteriorates in Independent Old-Old Adults. J. Aging Phys. Act. 2018, 26, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Vernooij, C.A.; Rao, G.; Berton, E.; Retornaz, F.; Temprado, J.-J. The Effect of Aging on Muscular Dynamics Underlying Movement Patterns Changes Muscular Functional Coordination in Aging. Front. Aging Neurosci. 2016, 8, 309. [Google Scholar] [CrossRef]
- Cruz-Jimenez, M. Normal Changes in Gait and Mobility Problems in the Elderly. Phys. Med. Rehabil. Clin. N. Am. 2017, 28, 713–725. [Google Scholar] [CrossRef]
- King, G.W.; Abreu, E.L.; Cheng, A.-L.; Chertoff, K.K.; Brotto, L.; Kelly, P.J.; Brotto, M. A Multimodal Assessment of Balance in Elderly and Young Adults. Oncotarget 2016, 7, 13297–13306. [Google Scholar] [CrossRef] [PubMed]
- Menz, H.B.; Lord, S.R.; Fitzpatrick, R.C. Age-Related Differences in Walking Stability. Age Ageing 2003, 32, 137–142. [Google Scholar] [CrossRef]
- Kim, W.S.; Kim, E.Y. Comparing Self-Selected Speed Walking of the Elderly With Self-Selected Slow, Moderate, and Fast Speed Walking of Young Adults. Ann. Rehabil. Med. 2014, 38, 101–108. [Google Scholar] [CrossRef]
- Morrison, S.; Newell, K.M. Intraindividual Variability of Neuromotor Function Predicts Falls Risk in Older Adults and Those with Type 2 Diabetes. J. Mot. Behav. 2019, 51, 151–160. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low Relative Skeletal Muscle Mass (Sarcopenia) in Older Persons Is Associated with Functional Impairment and Physical Disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef]
- Doherty, T.J. Invited Review: Aging and Sarcopenia. J. Appl. Physiol. 2003, 95, 1717–1727. [Google Scholar] [CrossRef]
- Lauretani, F.; Roberto Russo, C.; Bandinelli, S.; Bartali, B.; Cavazzini, C.; Di Iorio, A.; Maria Corsi, A.; Rantanen, T.; Guralnik, J.M.; Ferrucci, L.; et al. Age-Associated Changes in Skeletal Muscles and Their Effect on Mobility: An Operational Diagnosis of Sarcopenia. J. Appl. Physiol. 2003, 95, 1851–1860. [Google Scholar] [CrossRef] [PubMed]
- Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritchevsky, S.B.; Nevitt, M.; Schwartz, A.V.; Simonsick, E.M.; Tylavsky, F.A.; Visser, M.; Newman, A.B. The Loss of Skeletal Muscle Strength, Mass, and Quality in Older Adults: The Health, Aging and Body Composition Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61A, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Warren, M.; Ganley, K.J.; Pohl, P.S. The Association between Social Participation and Lower Extremity Muscle Strength, Balance, and Gait Speed in US Adults. Prev. Med. Rep. 2016, 4, 142–147. [Google Scholar] [CrossRef]
- Clark, D.J.; Pojednic, R.M.; Reid, K.F.; Patten, C.; Pasha, E.P.; Phillips, E.M.; Fielding, R.A. Longitudinal Decline of Neuromuscular Activation and Power in Healthy Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 1419–1425. [Google Scholar] [CrossRef]
- Dingwell, J.B.; Salinas, M.M.; Cusumano, J.P. Increased Gait Variability May Not Imply Impaired Stride-to-Stride Control of Walking in Healthy Older Adults. Gait Posture 2017, 55, 131–137. [Google Scholar] [CrossRef]
- Opie, G.M.; Otieno, L.A.; Pourmajidian, M.; Semmler, J.G.; Sidhu, S.K. Older Adults Differentially Modulate Transcranial Magnetic Stimulation-Electroencephalography Measures of Cortical Inhibition during Maximal Single-Joint Exercise. Neuroscience 2020, 425, 181–193. [Google Scholar] [CrossRef]
- Liu, J.; Sheng, Y.; Liu, H. Corticomuscular Coherence and Its Applications: A Review. Front. Hum. Neurosci. 2019, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.J.; Ting, L.H.; Zajac, F.E.; Neptune, R.R.; Kautz, S.A. Merging of Healthy Motor Modules Predicts Reduced Locomotor Performance and Muscle Coordination Complexity Post-Stroke. J. Neurophysiol. 2010, 103, 844–857. [Google Scholar] [CrossRef]
- Chvatal, S.A.; Ting, L.H. Common Muscle Synergies for Balance and Walking. Front. Comput. Neurosci. 2013, 7, 48. [Google Scholar] [CrossRef]
- Ivanenko, Y.P.; Poppele, R.E.; Lacquaniti, F. Five Basic Muscle Activation Patterns Account for Muscle Activity during Human Locomotion. J. Physiol. 2004, 556, 267–282. [Google Scholar] [CrossRef]
- Singh, R.E.; Iqbal, K.; White, G.; Hutchinson, T.E. A Systematic Review on Muscle Synergies: From Building Blocks of Motor Behavior to a Neurorehabilitation Tool. Appl. Bionics Biomech. 2018, 2018, 3615368. [Google Scholar] [CrossRef] [PubMed]
- Ting, L.H.; McKay, J.L. Neuromechanics of Muscle Synergies for Posture and Movement. Curr. Opin. Neurobiol. 2007, 17, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Steele, K.M.; Rozumalski, A.; Schwartz, M.H. Muscle Synergies and Complexity of Neuromuscular Control during Gait in Cerebral Palsy. Dev. Med. Child. Neurol. 2015, 57, 1176–1182. [Google Scholar] [CrossRef]
- Sawers, A.; Bhatt, T. Neuromuscular Determinants of Slip-Induced Falls and Recoveries in Older Adults. J. Neurophysiol. 2018, 120, 1534–1546. [Google Scholar] [CrossRef]
- Allen, J.L.; Franz, J.R. The Motor Repertoire of Older Adult Fallers May Constrain Their Response to Balance Perturbations. J. Neurophysiol. 2018, 120, 2368–2378. [Google Scholar] [CrossRef] [PubMed]
- Coscia, M.; Monaco, V.; Martelloni, C.; Rossi, B.; Chisari, C.; Micera, S. Muscle Synergies and Spinal Maps Are Sensitive to the Asymmetry Induced by a Unilateral Stroke. J. Neuroeng. Rehabil. 2015, 12, 39. [Google Scholar] [CrossRef]
- Kieliba, P.; Tropea, P.; Pirondini, E.; Coscia, M.; Micera, S.; Artoni, F. How Are Muscle Synergies Affected by Electromyography Pre-Processing? IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 882–893. [Google Scholar] [CrossRef]
- Shuman, B.R.; Schwartz, M.H.; Steele, K.M. Electromyography Data Processing Impacts Muscle Synergies during Gait for Unimpaired Children and Children with Cerebral Palsy. Front. Comput. Neurosci. 2017, 11, 50. [Google Scholar] [CrossRef] [PubMed]
- Monaco, V.; Ghionzoli, A.; Micera, S. Age-Related Modifications of Muscle Synergies and Spinal Cord Activity During Locomotion. J. Neurophysiol. 2010, 104, 2092–2102. [Google Scholar] [CrossRef]
- Baggen, R.J.; van Dieën, J.H.; Van Roie, E.; Verschueren, S.M.; Giarmatzis, G.; Delecluse, C.; Dominici, N. Age-Related Differences in Muscle Synergy Organization during Step Ascent at Different Heights and Directions. Appl. Sci. 2020, 10, 1987. [Google Scholar] [CrossRef]
- Santuz, A.; Brüll, L.; Ekizos, A.; Schroll, A.; Eckardt, N.; Kibele, A.; Schwenk, M.; Arampatzis, A. Neuromotor Dynamics of Human Locomotion in Challenging Settings. iScience 2020, 23, 100796. [Google Scholar] [CrossRef] [PubMed]
- Feldner, H.A.; Howell, D.; Kelly, V.E.; McCoy, S.W.; Steele, K.M. “Look, Your Muscles Are Firing!”: A Qualitative Study of Clinician Perspectives on the Use of Surface Electromyography in Neurorehabilitation. Arch. Phys. Med. Rehabil. 2019, 100, 663–675. [Google Scholar] [CrossRef]
- Campanini, I.; Disselhorst-Klug, C.; Rymer, W.Z.; Merletti, R. Surface EMG in Clinical Assessment and Neurorehabilitation: Barriers Limiting Its Use. Front. Neurol. 2020, 11, 934. [Google Scholar] [CrossRef] [PubMed]
- Agostini, V.; Fermo, F.L.; Massazza, G.; Knaflitz, M. Does Texting While Walking Really Affect Gait in Young Adults? J. NeuroEngineering Rehabil. 2012, 12, 86. [Google Scholar] [CrossRef]
- Nymark, J.R.; Balmer, S.J.; Melis, E.H.; Lemaire, E.D.; Millar, S. Electromyographic and Kinematic Nondisabled Gait Differences at Extremely Slow Overground and Treadmill Walking Speeds. J. Rehabil. Res. Dev. 2005, 42, 523–534. [Google Scholar] [CrossRef]
- Shuman, B.R.; Goudriaan, M.; Desloovere, K.; Schwartz, M.H.; Steele, K.M. Muscle Synergies Demonstrate Only Minimal Changes after Treatment in Cerebral Palsy. J. Neuroeng. Rehabil. 2019, 16, 46. [Google Scholar] [CrossRef] [PubMed]
- Steele, K.M.; Tresch, M.C.; Perreault, E.J. The Number and Choice of Muscles Impact the Results of Muscle Synergy Analyses. Front. Comput. Neurosci. 2013, 7, 105. [Google Scholar] [CrossRef]
- Collimore, A.N.; Aiello, A.J.; Pohlig, R.T.; Awad, L.N. The Dynamic Motor Control Index as a Marker of Age-Related Neuromuscular Impairment. Front. Aging Neurosci. 2021, 13, 678525. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, E. The Association between Elderly People’s Sedentary Behaviors and Their Health-Related Quality of Life: Focusing on Comparing the Young-Old and the Old-Old. Health Qual. Life Outcomes 2019, 17, 131. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M157. [Google Scholar] [CrossRef]
- Hayutin, A.M.; Dietz, M. New Realities of an Older America Challenges, Changes and Questions; Stanford Center on Longevity: Stanford, CA, USA, 2010. [Google Scholar]
- Ting, L.H.; Chvatal, S.A. Decomposing Muscle Activity in Motor Tasks: Methods and Interpretation. In Motor Control: Theories, Experiments, and Applications; Danion, F., Latash, M.L., Eds.; Oxford University Press: New York, NY, USA, 2010; pp. 102–138. [Google Scholar]
- Ma, Y.; Ye, S.; Zhao, D.; Liu, X.; Cao, L.; Zhou, H.; Zuo, G.; Shi, C. Using Different Matrix Factorization Approaches to Identify Muscle Synergy in Stroke Survivors. Med. Eng. Phys. 2023, 117, 103993. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.P.; Lin, Y.C.; Pandy, M.G. Lower-Limb Muscle Function in Healthy Young and Older Adults across a Range of Walking Speeds. Gait Posture 2022, 94, 124–130. [Google Scholar] [CrossRef] [PubMed]
- da Silva Costa, A.A.; Moraes, R.; Hortobágyi, T.; Sawers, A. Older Adults Reduce the Complexity and Efficiency of Neuromuscular Control to Preserve Walking Balance. Exp. Gerontol. 2020, 140, 111050. [Google Scholar] [CrossRef] [PubMed]
- Harris-Love, M.L.; Forrester, L.W.; Macko, R.F.; Silver, K.H.C.; Smith, G.V. Hemiparetic Gait Parameters in Overground Versus Treadmill Walking. Neurorehabilit. Neural Repair 2001, 15, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Alton, F.; Baldey, L.; Caplan, S.; Morrissey, M.C. A Kinematic Comparison of Overground and Treadmill Walking. Clin. Biomech. 1998, 13, 434–440. [Google Scholar] [CrossRef]
- Orssatto, L.B.R.; Borg, D.N.; Blazevich, A.J.; Sakugawa, R.L.; Shield, A.J.; Trajano, G.S. Intrinsic Motoneuron Excitability Is Reduced in Soleus and Tibialis Anterior of Older Adults. Geroscience 2021, 43, 2719–2735. [Google Scholar] [CrossRef]
- Johannsson, J.; Duchateau, J.; Baudry, S. Modulation of the Hoffmann Reflex in Soleus and Medial Gastrocnemius during Stair Ascent and Descent in Young and Older Adults. Gait Posture 2019, 68, 115–121. [Google Scholar] [CrossRef]
- Chen, Y.S.; Zhou, S.; Cartwright, C. Effects of Ankle Joint Position and Submaximal Muscle Contraction Intensity on Soleus H-Reflex Modulation in Young and Older Adults. Mot. Control 2014, 18, 112–126. [Google Scholar] [CrossRef]
- Kim, H.K.; Chou, L.S. Lower Limb Muscle Activation in Response to Balance-Perturbed Tasks during Walking in Older Adults: A Systematic Review. Gait Posture 2022, 93, 166–176. [Google Scholar] [CrossRef]
- Lim, Y.P.; Lin, Y.C.; Pandy, M.G. Muscle Function during Gait Is Invariant to Age When Walking Speed Is Controlled. Gait Posture 2013, 38, 253–259. [Google Scholar] [CrossRef]
- Jang, E.-M.; Yoo, W.-G. Comparison of the Gluteus Medius and Rectus Femoris Muscle Activities during Natural Sit-to-Stand and Sit-to-Stand with Hip Abduction in Young and Older Adults. J. Phys. Ther. Sci. 2015, 27, 375–376. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.E.; Lee, H.J.; Chou, L.S. Increased Muscular Challenge in Older Adults during Obstructed Gait. Gait Posture 2005, 22, 356–361. [Google Scholar] [CrossRef]
- Afschrift, M.; Pitto, L.; Aerts, W.; van Deursen, R.; Jonkers, I.; De Groote, F. Modulation of Gluteus Medius Activity Reflects the Potential of the Muscle to Meet the Mechanical Demands during Perturbed Walking. Sci. Rep. 2018, 8, 11675. [Google Scholar] [CrossRef] [PubMed]
- Chi, A.S.; Long, S.S.; Zoga, A.C.; Parker, L.; Morrison, W.B. Association of Gluteus Medius and Minimus Muscle Atrophy and Fall-Related Hip Fracture in Older Individuals Using Computed Tomography. J. Comput. Assist. Tomogr. 2016, 40, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Inacio, M.; Ryan, A.S.; Bair, W.-N.; Prettyman, M.; Beamer, B.A.; Rogers, M.W. Gluteal Muscle Composition Differentiates Fallers from Non-Fallers in Community Dwelling Older Adults. BMC Geriatr. 2014, 14, 37. [Google Scholar] [CrossRef] [PubMed]
Model Statistics | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
11 Muscles | 8 Muscles | 5 Muscles | ||||||||
Model | R² | Χ² | p | R² | Χ² | p | R² | Χ² | p | |
Muscle Synergies and Dynamic Motor Control Index | 0.297 | 10.620 | 0.031 | 0.267 | 9.418 | 0.051 | 0.075 | 2.396 | 0.663 | |
Muscle Synergies, Dynamic Motor Control Index, and Interaction | 0.422 | 16.251 | 0.012 | Could not converge | 0.193 | 6.533 | 0.366 | |||
Predictor Statistics | ||||||||||
11 muscles | 8 muscles | 5 muscles | ||||||||
Predictors | Χ² | p | Χ² | p | Χ² | p | ||||
Constant | 11.266 | 0.004 | 10.901 | 0.004 | 8.189 | 0.017 | ||||
Muscle Synergies | 5.416 | 0.067 | 5.186 | 0.075 | 0.924 | 0.630 | ||||
Dynamic Motor Control Index | 9.412 | 0.009 | 6.845 | 0.033 | 1.525 | 0.467 | ||||
Subgroup Analysis (OO Reference Group) | ||||||||||
11 muscles | 8 muscles | 5 muscles | ||||||||
Predictor | β | OR | p | β | OR | p | β | OR | p | |
YH | Constant | 2.30 | 0.025 | 2.14 | 0.024 | 1.38 | 0.013 | |||
Muscle Synergies | −3.37 | 0.03 | 0.019 | −3.63 | 0.03 | 0.048 | −1.23 | 0.29 | 0.484 | |
Dynamic Motor Control Index | 0.23 | 1.26 | 0.017 | 0.17 | 1.19 | 0.040 | 0.07 | 1.07 | 0.289 | |
YO | Constant | 2.05 | 0.038 | 1.88 | 0.050 | 1.05 | 0.069 | |||
Muscle Synergies | −2.19 | 0.11 | 0.048 | −3.00 | 0.05 | 0.099 | −1.62 | 0.20 | 0.369 | |
Dynamic Motor Control Index | 0.17 | 1.19 | 0.047 | 0.12 | 1.12 | 0.154 | 0.04 | 1.04 | 0.596 | |
YH | Constant | 3.86 | 0.981 | 9.18 | 0.996 | 1.55 | 0.807 | |||
Muscle Synergies | −5.84 | 0.00 | 0.987 | −130.53 | 0.00 | 0.997 | −5.52 | 0.00 | 0.942 | |
Dynamic Motor Control Index | 0.34 | 1.41 | 0.056 | −0.64 | 0.527 | 0.998 | −0.11 | 0.90 | 0.916 | |
Muscle Synergies x Dynamic Motor Control Index | −0.36 | 0.70 | 0.000 | Could not converge | 2.12 | 8.31 | 0.861 | |||
YO | Constant | 3.34 | 0.981 | 6.98 | 0.990 | 2.81 | <0.001 | |||
Muscle Synergies | −3.68 | 0.03 | 0.987 | −98.37 | 0.00 | 0.993 | −23.77 | 0.00 | . | |
Dynamic Motor Control Index | 0.27 | 1.31 | 0.015 | −0.95 | 0.386 | <0.001 | 0.08 | 1.09 | 0.213 | |
Muscle Synergies x Dynamic Motor Control Index | −0.16 | 0.86 | . | Could not converge | −0.69 | 0.50 | . |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collimore, A.N.; Pohlig, R.T.; Awad, L.N. Minimum Electromyography Sensor Set Needed to Identify Age-Related Impairments in the Neuromuscular Control of Walking Using the Dynamic Motor Control Index. Sensors 2024, 24, 7442. https://doi.org/10.3390/s24237442
Collimore AN, Pohlig RT, Awad LN. Minimum Electromyography Sensor Set Needed to Identify Age-Related Impairments in the Neuromuscular Control of Walking Using the Dynamic Motor Control Index. Sensors. 2024; 24(23):7442. https://doi.org/10.3390/s24237442
Chicago/Turabian StyleCollimore, Ashley N., Ryan T. Pohlig, and Louis N. Awad. 2024. "Minimum Electromyography Sensor Set Needed to Identify Age-Related Impairments in the Neuromuscular Control of Walking Using the Dynamic Motor Control Index" Sensors 24, no. 23: 7442. https://doi.org/10.3390/s24237442
APA StyleCollimore, A. N., Pohlig, R. T., & Awad, L. N. (2024). Minimum Electromyography Sensor Set Needed to Identify Age-Related Impairments in the Neuromuscular Control of Walking Using the Dynamic Motor Control Index. Sensors, 24(23), 7442. https://doi.org/10.3390/s24237442