Detecting Honey Adulteration: Advanced Approach Using UF-GC Coupled with Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Honey Analysis
2.3. Data Analysis
3. Results
3.1. Exploratory Analysis
3.2. Supervised Models for Prediction of Level of Adulterant
3.2.1. Least Absolute Shrinkage and Selection Operator (LASSO)
3.2.2. Ridge Regression (RIDGE)
3.2.3. Elastic Net (ENET)
3.2.4. Partial Least Square (PLS)
3.2.5. Random Forest (RF)
3.2.6. Support Vector Regression (SVR)
3.3. Honey Botanical Origin Classification
3.3.1. Principal Component Analysis (PCA)
3.3.2. Supervised Models for Classification According to Botanical Origin
3.3.3. Prediction of Level of Adulterant in Orange Blossom and Sunflower Honey
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CODEX STAN 12-2019; Codex Alimentarius Revised Codex Standard for Honey. Codex Alimentarius Commission. FAO/OMS: Rome, Italy, 2019.
- Mădaş, N.M.; Mărghitaş, L.A.; Dezmirean, D.S.; Bonta, V.; Bobiş, O.; Fauconnier, M.L.; Francis, F.; Haubruge, E.; Nguyen, K.B. Volatile Profile and Physico-Chemical Analysis of Acacia Honey for Geographical Origin and Nutritional Value Determination. Foods 2019, 8, 445. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.E.; Ndip, R.N.; Clarke, A.M. Volatile Compounds in Honey: A Review on Their Involvement in Aroma, Botanical Origin Determination and Potential Biomedical Activities. Int. J. Mol. Sci. 2011, 12, 9514–9532. [Google Scholar] [CrossRef] [PubMed]
- Se, K.W.; Wahab, R.A.; Syed Yaacob, S.N.; Ghoshal, S.K. Detection Techniques for Adulterants in Honey: Challenges and Recent Trends. J. Food Compos. Anal. 2019, 80, 16–32. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Louppis, A.P.; Karabournioti, S.; Kontakos, S.; Papastephanou, C.; Kontominas, M.G. Characterization and Geographical Discrimination of Commercial Citrus Spp. Honeys Produced in Different Mediterranean Countries Based on Minerals, Volatile Compounds and Physicochemical Parameters, Using Chemometrics. Food Chem. 2017, 217, 445–455. [Google Scholar] [CrossRef]
- Council Directive 2001/110/EC of 20 December 2001 Relating to Honey. Official Journal of the European Communities, 12 January 2002; L 010, pp. 47–52.
- Brar, D.S.; Pant, K.; Krishnan, R.; Kaur, S.; Rasane, P.; Nanda, V.; Saxena, S.; Gautam, S. A Comprehensive Review on Unethical Honey: Validation by Emerging Techniques. Food Control 2023, 145, 109482. [Google Scholar] [CrossRef]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical Composition, Stability and Authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Zhang, G.; Abdulla, W. On Honey Authentication and Adulterant Detection Techniques. Food Control 2022, 138, 108992. [Google Scholar] [CrossRef]
- Wang, Y.; Aykas, D.P. Determination of Possible Adulteration and Quality Assessment in Commercial Honey. Foods 2023, 12, 523. [Google Scholar] [CrossRef]
- Naila, A.; Flint, S.H.; Sulaiman, A.Z.; Ajit, A.; Weeds, Z. Classical and Novel Approaches to the Analysis of Honey and Detection of Adulterants. Food Control 2018, 90, 152–165. [Google Scholar] [CrossRef]
- Tosun, M. Detection of Adulteration in Honey Samples Added Various Sugar Syrups with 13C/12C Isotope Ratio Analysis Method. Food Chem. 2013, 138, 1629–1632. [Google Scholar] [CrossRef]
- Ruiz-Matute, A.I.; Soria, A.C.; Martínez-Castro, I.; Sanz, M.L. A New Methodology Based on GC-MS to Detect Honey Adulteration with Commercial Syrups. J. Agric. Food Chem. 2007, 55, 7264–7269. [Google Scholar] [CrossRef] [PubMed]
- Sotiropoulou, N.S.; Xagoraris, M.; Revelou, P.K.; Kaparakou, E.; Kanakis, C.; Pappas, C.; Tarantilis, P. The Use of SPME-GC-MS IR and Raman Techniques for Botanical and Geographical Authentication and Detection of Adulteration of Honey. Foods 2021, 10, 1671. [Google Scholar] [CrossRef] [PubMed]
- Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Palma, M.; Barbero, G.F. A Screening Method Based on Headspace-Ion Mobility Spectrometry to Identify Adulterated Honey. Sensors 2019, 19, 1621. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; She, S.; Xin, M.; Chen, L.; Li, Y.; Heyden, Y.V.; Rogers, K.M.; Chen, L. Detection of Adulteration in Chinese Monofloral Honey Using 1H Nuclear Magnetic Resonance and Chemometrics. J. Food Compos. Anal. 2020, 86, 103390. [Google Scholar] [CrossRef]
- Dumancas, G.G.; Ellis, H. Comprehensive Examination and Comparison of Machine Learning Techniques for the Quantitative Determination of Adulterants in Honey Using Fourier Infrared Spectroscopy with Attenuated Total Reflectance Accessory. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 276, 121186. [Google Scholar] [CrossRef]
- Mitra, P.K.; Karmakar, R.; Nandi, R.; Gupta, S. Low-Cost Rapid Workflow for Honey Adulteration Detection by UV–Vis Spectroscopy in Combination with Factorial Design, Response Surface Methodology and Supervised Machine Learning Classifiers. Bioresour. Technol. Rep. 2023, 21, 101327. [Google Scholar] [CrossRef]
- Ferreiro-González, M.; Espada-Bellido, E.; Guillén-Cueto, L.; Palma, M.; Barroso, C.G.; Barbero, G.F. Rapid Quantification of Honey Adulteration by Visible-near Infrared Spectroscopy Combined with Chemometrics. Talanta 2018, 188, 288–292. [Google Scholar] [CrossRef]
- Wu, X.; Xu, B.; Ma, R.; Niu, Y.; Gao, S.; Liu, H.; Zhang, Y. Identification and Quantification of Adulterated Honey by Raman Spectroscopy Combined with Convolutional Neural Network and Chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 274, 121133. [Google Scholar] [CrossRef]
- Izquierdo, M.; Lastra-Mejías, M.; González-Flores, E.; Cancilla, J.C.; Pérez, M.; Torrecilla, J.S. Convolutional Decoding of Thermographic Images to Locate and Quantify Honey Adulterations. Talanta 2020, 209, 120500. [Google Scholar] [CrossRef]
- Peris, M.; Escuder-Gilabert, L. Electronic Noses and Tongues to Assess Food Authenticity and Adulteration. Trends Food Sci. Technol. 2016, 58, 40–54. [Google Scholar] [CrossRef]
- Wu, L.; Du, B.; Vander Heyden, Y.; Chen, L.; Zhao, L.; Wang, M.; Xue, X. Recent Advancements in Detecting Sugar-Based Adulterants in Honey—A Challenge. TrAC Trends Anal. Chem. 2017, 86, 25–38. [Google Scholar] [CrossRef]
- Liu, R.C.; Li, R.; Wang, Y.; Jiang, Z.T. Analysis of Volatile Odor Compounds and Aroma Properties of European Vinegar by the Ultra-Fast Gas Chromatographic Electronic Nose. J. Food Compos. Anal. 2022, 112, 104673. [Google Scholar] [CrossRef]
- Majchrzak, T.; Wojnowski, W.; Płotka-Wasylka, J. Classification of Polish Wines by Application of Ultra-Fast Gas Chromatography. Eur. Food Res. Technol. 2018, 244, 1463–1471. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Gu, H.-W.; Liu, R.-J.; Qing, X.-D.; Nie, J.-F. A Comprehensive Review of the Current Trends and Recent Advancements on the Authenticity of Honey. Food Chem. X 2023, 19, 100850. [Google Scholar] [CrossRef]
- Razavi, R.; Kenari, R.E. Ultraviolet–Visible Spectroscopy Combined with Machine Learning as a Rapid Detection Method to the Predict Adulteration of Honey. Heliyon 2023, 9, e20973. [Google Scholar] [CrossRef]
- Calle, J.L.P.; Punta-Sánchez, I.; González-de-Peredo, A.V.; Ruiz-Rodríguez, A.; Ferreiro-González, M.; Palma, M. Rapid and Automated Method for Detecting and Quantifying Adulterations in High-Quality Honey Using Vis-NIRs in Combination with Machine Learning. Foods 2023, 12, 2491. [Google Scholar] [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with the Boruta Package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Extract and Visualize the Results of Multivariate Data Analyses [R Package Factoextra Version 1.0.7]. CRAN Contrib. Packages 2020. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: London, UK, 2009. [Google Scholar]
- Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and Variable Selection via the Elastic Net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Wold, H. Estimation of Principal Components and Related Models by Iterative Least Squares In Multivariate Analysis. In Multivariate Analysis; Academic Press: Cambridge, MA, USA, 1966; pp. 391–420. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Shoesmith, E.; Vapnik, V.; Kotz, S. Estimation of Dependences Based on Empirical Data. J. R. Stat. Soc. Ser. D 1984, 33, 324. [Google Scholar] [CrossRef]
- Wu, X.; Xu, B.; Ma, R.; Gao, S.; Niu, Y.; Zhang, X.; Du, Z.; Liu, H.; Zhang, Y. Botanical Origin Identification and Adulteration Quantification of Honey Based on Raman Spectroscopy Combined with Convolutional Neural Network. Vib. Spectrosc. 2022, 123, 103439. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, T.; Zhou, J.; Chen, L. Application of Stable Isotopic and Elemental Composition Combined with Random Forest Algorithm for the Botanical Classification of Chinese Honey. J. Food Compos. Anal. 2022, 110, 104565. [Google Scholar] [CrossRef]
Technique | Principle/Compounds Involved | Limitations and Challenges |
---|---|---|
Stable Carbon Isotope Ratio Analysis (SCIRA) | Isotopic ratios of sugars | Limited resolution, expensive equipment |
Gas Chromatography (GC) | Analysis of volatile compounds | Miss non-volatile adulterants, complex sample preparation |
Ion Mobility–Mass Spectrometry (IMS) | Analysis of volatile compounds | Limited resolution, quantification challenges |
Nuclear Magnetic Resonance (NMR) | Joint spectra mainly from sugars | Limited sensitivity, high cost, skill-dependent |
Fourier Infrared Spectroscopy with ATR (FTIR-ATR) | Joint spectra mainly from sugars | Limited specificity, vulnerable to impurities |
UV–Visible (UV-Vis) and Near-Infrared (NIR) Spectroscopy | Joint spectra mainly from sugars | Lack of specificity, need for comprehensive databases |
Raman Spectroscopy | Joint spectra mainly from sugars | Limited penetration, sensitivity to sample properties |
Thermographic Images | Surface temperature mapping | Limited applicability, interpretation challenges |
Algorithm | Dataset | Hyperparameters | 5-Fold CV Performance | |
---|---|---|---|---|
RMSE | R2 | |||
LASSO | All | λ = 0.132 | 4.041 | 0.937 |
OB | λ = 0.305 | 2.340 | 0.990 | |
SF | λ = 0.201 | 2.712 | 0.992 | |
RIDGE | All | λ = 10 | 6.353 | 0.901 |
OB | λ = 10 | 3.508 | 0.973 | |
SF | λ = 10 | 3.404 | 0.991 | |
ENET | All | α = 0.03 λ = 1 | 4.041 | 0.937 |
OB | α = 0.1 λ = 0.923 | 2.297 | 0.989 | |
SF | α = 0.1 λ = 0.100 | 2.631 | 0.993 | |
PLS | All | 3 LVs | 2.978 | 0.972 |
OB | 3 LVs | 2.112 | 0.996 | |
SF | 3 LVs | 2.710 | 0.995 | |
RF | All | Mtry = 1 | 6.095 | 0.881 |
OB | Mtry = 46 | 4.452 | 0.986 | |
SF | Mtry = 40 | 3.399 | 0.980 | |
SVR | All | γ = 1.381 × 10−3 C = 1024 | 2.953 | 0.973 |
OB | γ = 9.766 × 10−4 C = 32 | 3.099 | 0.989 | |
SF | γ = 3.906 × 10−3 C = 45.255 | 2.036 | 0.992 |
Algorithm | Dataset | Training Set Performance (n = 33) | Test Set Performance (n = 11) | ||||
---|---|---|---|---|---|---|---|
RMSE | R2 | RPD | RMSE | R2 | RPD | ||
LASSO | AllA | 3.745 | 0.943 | 4.235 | 6.335 | 0.874 | 2.707 |
OB | 1.615 | 0.990 | 10.507 | 1.306 | 0.994 | 16.120 | |
SF | 1.956 | 0.985 | 8.365 | 1.357 | 0.999 | 12.667 | |
RIDGE | AllB | 5.480 | 0.877 | 2.894 | 6.726 | 0.836 | 2.550 |
OB | 3.737 | 0.977 | 4.468 | 5.026 | 0.984 | 4.181 | |
SF | 3.293 | 0.979 | 4.999 | 2.300 | 0.998 | 7.572 | |
ENET | AllA | 2.898 | 0.966 | 5.473 | 6.941 | 0.882 | 2.471 |
OB | 1.603 | 0.990 | 9.944 | 1.365 | 0.994 | 14.340 | |
SF | 3.668 | 0.948 | 8.058 | 1.399 | 0.999 | 12.295 | |
PLS | AllA | 2.883 | 0.966 | 0.714 | 7.308 | 0.875 | 2.347 |
OB | 1.737 | 0.987 | 9.534 | 1.732 | 0.992 | 13.273 | |
SF | 2.159 | 0.982 | 7.629 | 1.518 | 0.999 | 11.420 | |
RF | AllC | 3.430 | 0.953 | 4.623 | 6.284 | 0.868 | 2.729 |
OB | 4.666 | 0.988 | 7.789 | 5.112 | 0.964 | 3.976 | |
SF | 1.983 | 0.989 | 8.752 | 2.100 | 0.996 | 7.785 | |
SVR | AllA | 2.700 | 0.970 | 5.872 | 6.336 | 0.909 | 2.706 |
OB | 1.639 | 0.990 | 9.743 | 1.435 | 0.995 | 12.19 | |
SF | 1.452 | 0.992 | 11.516 | 1.928 | 0.999 | 9.359 |
Algorithm | Hyperparameters | 5-Fold CV Accuracy (%) | Training Set (n = 33) Accuracy (%) | Test Set (n = 11) Accuracy (%) |
---|---|---|---|---|
RF | mtry = 19 γ = 4.883 × 10−4 | 100 | 100 | 100 |
SVM | C = 0.5 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Punta-Sánchez, I.; Dymerski, T.; Calle, J.L.P.; Ruiz-Rodríguez, A.; Ferreiro-González, M.; Palma, M. Detecting Honey Adulteration: Advanced Approach Using UF-GC Coupled with Machine Learning. Sensors 2024, 24, 7481. https://doi.org/10.3390/s24237481
Punta-Sánchez I, Dymerski T, Calle JLP, Ruiz-Rodríguez A, Ferreiro-González M, Palma M. Detecting Honey Adulteration: Advanced Approach Using UF-GC Coupled with Machine Learning. Sensors. 2024; 24(23):7481. https://doi.org/10.3390/s24237481
Chicago/Turabian StylePunta-Sánchez, Irene, Tomasz Dymerski, José Luis P. Calle, Ana Ruiz-Rodríguez, Marta Ferreiro-González, and Miguel Palma. 2024. "Detecting Honey Adulteration: Advanced Approach Using UF-GC Coupled with Machine Learning" Sensors 24, no. 23: 7481. https://doi.org/10.3390/s24237481
APA StylePunta-Sánchez, I., Dymerski, T., Calle, J. L. P., Ruiz-Rodríguez, A., Ferreiro-González, M., & Palma, M. (2024). Detecting Honey Adulteration: Advanced Approach Using UF-GC Coupled with Machine Learning. Sensors, 24(23), 7481. https://doi.org/10.3390/s24237481