Excitation-Dependent pKa Extends the Sensing Range of Fluorescence Lifetime pH Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Expression and Purification
2.2. Time-Resolved Fluorescence Spectroscopy
3. Results and Discussion
3.1. Theory
3.2. Experimental Proof-of-Concept for Intensiometric Sensors
3.3. Experimental Proof-of-Concept for Ratiometric Sensors
3.4. Improved Sensing Range in Practice with Live-Cell Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Casey, J.R.; Grinstein, S.; Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 2010, 11, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Czowski, B.J.; Romero-Moreno, R.; Trull, K.J.; White, K.A. Cancer and pH Dynamics: Transcriptional Regulation, Proteostasis, and the Need for New Molecular Tools. Cancers 2020, 12, 2760. [Google Scholar] [CrossRef] [PubMed]
- Hagihara, H.; Shoji, H.; Hattori, S.; Sala, G.; Takamiya, Y.; Tanaka, M.; Ihara, M.; Shibutani, M.; Hatada, I.; Hori, K.; et al. Large-scale animal model study uncovers altered brain pH and lactate levels as a transdiagnostic endophenotype of neuropsychiatric disorders involving cognitive impairment. Elife 2024, 12, RP89376. [Google Scholar] [CrossRef] [PubMed]
- Hajjar, S.; Zhou, X. pH sensing at the intersection of tissue homeostasis and inflammation. Trends Immunol. 2023, 44, 807–825. [Google Scholar] [CrossRef] [PubMed]
- Burgstaller, S.; Bischof, H.; Gensch, T.; Stryeck, S.; Gottschalk, B.; Ramadani-Muja, J.; Eroglu, E.; Rost, R.; Balfanz, S.; Baumann, A.; et al. pH-Lemon, a Fluorescent Protein-Based pH Reporter for Acidic Compartments. ACS Sens. 2019, 4, 883–891. [Google Scholar] [CrossRef]
- Liu, A.; Huang, X.; He, W.; Xue, F.; Yang, Y.; Liu, J.; Chen, L.; Yuan, L.; Xu, P. pHmScarlet is a pH-sensitive red fluorescent protein to monitor exocytosis docking and fusion steps. Nat. Commun. 2021, 12, 1413. [Google Scholar] [CrossRef]
- Martineau, M.; Somasundaram, A.; Grimm, J.B.; Gruber, T.D.; Choquet, D.; Taraska, J.W.; Lavis, L.D.; Perrais, D. Semisynthetic fluorescent pH sensors for imaging exocytosis and endocytosis. Nat. Commun. 2017, 8, 1412. [Google Scholar] [CrossRef]
- Shen, Y.; Wen, Y.; Sposini, S.; Vishwanath, A.A.; Abdelfattah, A.S.; Schreiter, E.R.; Lemieux, M.J.; de Juan-Sanz, J.; Perrais, D.; Campbell, R.E. Rational Engineering of an Improved Genetically Encoded pH Sensor Based on Superecliptic pHluorin. ACS Sens. 2023, 8, 3014–3022. [Google Scholar] [CrossRef]
- Han, J.; Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev. 2010, 110, 2709–2728. [Google Scholar] [CrossRef]
- Greenwald, E.C.; Mehta, S.; Zhang, J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem. Rev. 2018, 118, 11707–11794. [Google Scholar] [CrossRef]
- Bogdanova, Y.A.; Solovyev, I.D.; Baleeva, N.S.; Myasnyanko, I.N.; Gorshkova, A.A.; Gorbachev, D.A.; Gilvanov, A.R.; Goncharuk, S.A.; Goncharuk, M.V.; Mineev, K.S.; et al. Fluorescence lifetime multiplexing with fluorogen activating protein FAST variants. Commun. Biol. 2024, 7, 799. [Google Scholar] [CrossRef] [PubMed]
- Goryashchenko, A.S.; Pakhomov, A.A.; Ryabova, A.V.; Romanishkin, I.D.; Maksimov, E.G.; Orsa, A.N.; Serova, O.V.; Mozhaev, A.A.; Maksimova, M.A.; Martynov, V.I.; et al. FLIM-Based Intracellular and Extracellular pH Measurements Using Genetically Encoded pH Sensor. Biosensors 2021, 11, 340. [Google Scholar] [CrossRef] [PubMed]
- Kanno, H.; Hiramatsu, K.; Mikami, H.; Nakayashiki, A.; Yamashita, S.; Nagai, A.; Okabe, K.; Li, F.; Yin, F.; Tominaga, K.; et al. High-throughput fluorescence lifetime imaging flow cytometry. Nat. Commun. 2024, 15, 7376. [Google Scholar] [CrossRef] [PubMed]
- Koveal, D. Functional principles of genetically encoded fluorescent biosensors for metabolism and their quantitative use. J. Neurochem. 2024, 168, 496–505. [Google Scholar] [CrossRef]
- Linders, P.T.A.; Ioannidis, M.; Ter Beest, M.; van den Bogaart, G. Fluorescence Lifetime Imaging of pH along the Secretory Pathway. ACS Chem. Biol. 2022, 17, 240–251. [Google Scholar] [CrossRef]
- Mongeon, R.; Venkatachalam, V.; Yellen, G. Cytosolic NADH-NAD(+) Redox Visualized in Brain Slices by Two-Photon Fluorescence Lifetime Biosensor Imaging. Antioxid Redox Signal. 2016, 25, 553–563. [Google Scholar] [CrossRef]
- Szmacinski, H.; Lakowicz, J.R. Possibility of simultaneously measuring low and high calcium concentrations using Fura-2 and lifetime-based sensing. Cell Calcium 1995, 18, 64–75. [Google Scholar] [CrossRef]
- Haynes, E.P.; Rajendran, M.; Henning, C.K.; Mishra, A.; Lyon, A.M.; Tantama, M. Quantifying Acute Fuel and Respiration Dependent pH Homeostasis in Live Cells Using the mCherryTYG Mutant as a Fluorescence Lifetime Sensor. Anal. Chem. 2019, 91, 8466–8475. [Google Scholar] [CrossRef]
- Tantama, M.; Hung, Y.P.; Yellen, G. Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor. J. Am. Chem. Soc. 2011, 133, 10034–10037. [Google Scholar] [CrossRef]
- Brejc, K.; Sixma, T.K.; Kitts, P.A.; Kain, S.R.; Tsien, R.Y.; Ormo, M.; Remington, S.J. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc. Natl. Acad. Sci. USA 1997, 94, 2306–2311. [Google Scholar] [CrossRef]
- Tantama, M.; Hung, Y.P.; Yellen, G. Optogenetic reporters: Fluorescent protein-based genetically encoded indicators of signaling and metabolism in the brain. Prog. Brain Res. 2012, 196, 235–263. [Google Scholar] [CrossRef] [PubMed]
- Miesenbock, G.; De Angelis, D.A.; Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 1998, 394, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Rosendale, M.; Campbell, R.E.; Perrais, D. pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis. J. Cell Biol. 2014, 207, 419–432. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haynes, E.P.; Canzano, M.; Tantama, M. Excitation-Dependent pKa Extends the Sensing Range of Fluorescence Lifetime pH Sensors. Sensors 2024, 24, 7531. https://doi.org/10.3390/s24237531
Haynes EP, Canzano M, Tantama M. Excitation-Dependent pKa Extends the Sensing Range of Fluorescence Lifetime pH Sensors. Sensors. 2024; 24(23):7531. https://doi.org/10.3390/s24237531
Chicago/Turabian StyleHaynes, Emily P., Mary Canzano, and Mathew Tantama. 2024. "Excitation-Dependent pKa Extends the Sensing Range of Fluorescence Lifetime pH Sensors" Sensors 24, no. 23: 7531. https://doi.org/10.3390/s24237531
APA StyleHaynes, E. P., Canzano, M., & Tantama, M. (2024). Excitation-Dependent pKa Extends the Sensing Range of Fluorescence Lifetime pH Sensors. Sensors, 24(23), 7531. https://doi.org/10.3390/s24237531