Time Efficiency and Ergonomic Assessment of a Robotic Wheelchair Transfer System
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Motion Capture
2.3. Training
2.3.1. Transfers Using Mechanical Lift
2.3.2. Transfers Using the PPTS
2.4. Study Protocol
2.5. Data Analysis
3. Results
3.1. Participants
3.2. Time Required to Complete Transfers
3.3. Trunk Joint Angles
3.4. Time Spent in Non-Neutral Trunk Posture
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skotte, J.H.; Essendrop, M.; Hansen, A.F.; Schibye, B. A dynamic 3D biomechanical evaluation of the load on the low back during different patient-handling tasks. J. Biomech. 2002, 35, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Marras, W.S.; Davis, K.G.; Kirking, B.C.; Bertsche, P.K. A comprehensive analysis of low-back disorder risk and spinal loading during the transferring and repositioning of patients using different techniques. Ergonomics 1999, 42, 904–926. [Google Scholar] [CrossRef]
- Dicianno, B.E.; Joseph, J.; Eckstein, S.; Zigler, C.K.; Quinby, E.; Schmeler, M.R.; Schein, R.M.; Pearlman, J.; Cooper, R.A. The voice of the consumer: A survey of veterans and other users of assistive technology. Mil. Med. 2018, 183, e518–e525. [Google Scholar] [CrossRef] [PubMed]
- Nonfatal Occupational Injuries and Illnesses Requiring Days Away from Work, 2015; Bureau of Labor Statistics: Washington, DC, USA, 2016.
- Ribeiro, T.; Serranheira, F.; Loureiro, H. Work related musculoskeletal disorders in primary health care nurses. Appl. Nurs. Res. 2017, 33, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Daraiseh, N.; Cronin, S.; Davis, L.; Shell, R.; Karwowski, W. Low back symptoms among hospital nurses, associations to individual factors and pain in multiple body regions. Int. J. Ind. Ergon. 2010, 40, 19–24. [Google Scholar] [CrossRef]
- Oranye, N.O.; Wallis, B.; Roer, K.; Archer-Heese, G.; Aguilar, Z. Do personal factors or types of physical tasks predict workplace injury? Workplace Health Saf. 2016, 64, 141–151. [Google Scholar] [CrossRef]
- Waehrer, G.; Leigh, J.P.; Miller, T.R. Costs of occupational injury and illness within the health services sector. Int. J. Health Serv. 2005, 35, 343–359. [Google Scholar] [CrossRef]
- Bernard, B.P.; Putz-Anderson, V. Musculoskeletal Disorders and Workplace Factors: A Critical Review of Epidemiologic Evidence for Work-Related Musculoskeletal Disorders of the Neck, Upper Extremity, and Low Back. 1997. Available online: https://stacks.cdc.gov/view/cdc/21745 (accessed on 3 October 2024).
- Andersen, J.H.; Haahr, J.P.; Frost, P. Risk factors for more severe regional musculoskeletal symptoms: A two-year prospective study of a general working population. Arthritis Rheum. 2007, 56, 1355–1364. [Google Scholar] [CrossRef]
- Skotte, J.; Fallentin, N. Low back injury risk during repositioning of patients in bed: The influence of handling technique, patient weight and disability. Ergonomics 2008, 51, 1042–1052. [Google Scholar] [CrossRef]
- Oranye, N.O.; Bennett, J. Prevalence of work-related musculoskeletal and non-musculoskeletal injuries in health care workers: The implications for work disability management. Ergonomics 2018, 61, 355–366. [Google Scholar] [CrossRef]
- Leigh, J.P.; Waehrer, G.; Miller, T.R.; McCurdy, S.A. Costs differences across demographic groups and types of occupational injuries and illnesses. Am. J. Ind. Med. 2006, 49, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Yassi, A.; Cooper, J.; Tate, R.; Gerlach, S.; Muir, M.; Trottier, J.; Massey, K. A randomized Controlled Trial to Prevent Patient Lift and Transfer Injuries of Health Care Workers; LWW: Philadelphia, PE, USA, 2001. [Google Scholar]
- Sivakanthan, S.; Blaauw, E.; Greenhalgh, M.; Koontz, A.M.; Vegter, R.; Cooper, R.A. Person transfer assist systems: A literature review. Disabil. Rehabil. Assist. Technol. 2021, 16, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Fray, M.; Davis, K.G. Effectiveness of safe patient handling equipment and techniques: A review of biomechanical studies. Hum. Factors 2024, 66, 2283–2322. [Google Scholar] [CrossRef] [PubMed]
- Dutta, T.; Holliday, P.J.; Gorski, S.M.; Baharvandy, M.S.; Fernie, G.R. A biomechanical assessment of floor and overhead lifts using one or two caregivers for patient transfers. Appl. Ergon. 2012, 43, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Hodder, J.N.; Holmes, M.W.; Keir, P.J. Continuous assessment of work activities and posture in long-term care nurses. Ergonomics 2010, 53, 1097–1107. [Google Scholar] [CrossRef]
- Garg, A.; Owen, B.; Beller, D.; Banaag, J. A biomechanical and ergonomic evaluation of patient transferring tasks: Bed to wheelchair and wheelchair to bed. Ergonomics 1991, 34, 289–312. [Google Scholar] [CrossRef]
- Satpute, S.A.; Candiotti, J.L.; Duvall, J.A.; Kulich, H.; Cooper, R.; Grindle, G.G.; Gebrosky, B.; Brown, J.; Eckstein, I.; Sivakanthan, S. Participatory Action Design and Engineering of Powered Personal Transfer System for Wheelchair Users: Initial Design and Assessment. Sensors 2023, 23, 5540. [Google Scholar] [CrossRef]
- Satpute, S.A.; Cooper, R.; Candiotti, J.; Duvall, J.A.; Gebrosky, B.; Grindle, G.; Deepak, N.; Sivakanthan, S.; Koontz, A.; Cooper, R.A. Perceptions and assessment of a novel robotic wheelchair transfer system. J. Spinal Cord Med. 2024, 1–10. [Google Scholar] [CrossRef]
- Owen, B.; Garg, A. Assistive devices for use with patient handling tasks. Adv. Ind. Ergon. Saf. 1990, 2, 585–592. [Google Scholar]
- Josephson, M.; Vingård, E.; Group, M.-N.S. Workplace factors and care seeking for low-back pain among female nursing personnel. Scand. J. Work. Environ. Health 1998, 24, 465–472. [Google Scholar] [CrossRef]
- Harkness, E.; MacFarlane, G.J.; Nahit, E.; Silman, A.; McBeth, J. Risk factors for new-onset low back pain amongst cohorts of newly employed workers. Rheumatology 2003, 42, 959–968. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, S.G.; Ariëns, G.A.; Boshuizen, H.C.; Hoogendoorn, W.E.; Bongers, P.M. Prognostic factors related to recurrent low-back pain and sickness absence. Scand. J. Work. Environ. Health 2004, 30, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Videman, T.; Ojajärvi, A.; Riihimäki, H.; Troup, J.D. Low back pain among nurses: A follow-up beginning at entry to the nursing school. Spine 2005, 30, 2334–2341. [Google Scholar] [CrossRef] [PubMed]
- Hoogendoorn, W.E.; Bongers, P.M.; De Vet, H.C.; Douwes, M.; Koes, B.W.; Miedema, M.C.; Ariëns, G.A.; Bouter, L.M. Flexion and rotation of the trunk and lifting at work are risk factors for low back pain: Results of a prospective cohort study. Spine 2000, 25, 3087–3092. [Google Scholar] [CrossRef] [PubMed]
- Keyserling, W.M.; Punnett, L.; Fine, L.J. Trunk posture and back pain: Identification and control of occupational risk factors. Appl. Ind. Hyg. 1988, 3, 87–92. [Google Scholar] [CrossRef]
- Punnett, L.; Fine, L.J.; Keyserling, W.M.; Herrin, G.D.; Chaffin, D.B. Back disorders and nonneutral trunk postures of automobile assembly workers. Scand. J. Work. Environ. Health 1991, 337–346. [Google Scholar] [CrossRef]
- Santaguida, P.L.; Pierrynowski, M.; Goldsmith, C.; Fernie, G. Comparison of cumulative low back loads of caregivers when transferring patients using overhead and floor mechanical lifting devices. Clin. Biomech. 2005, 20, 906–916. [Google Scholar] [CrossRef]
- Cheung, K.; Dai, J.; Cheung, C.L.; Cho, H.K.; Chow, Y.L.; Fung, K.Y.; Lam, W.S.; Li, H.L.C.; Ng, S.Y.; Ngan, M.Y. The biomechanical evaluation of patient transfer tasks by female nursing students: With and without a transfer belt. Appl. Ergon. 2020, 82, 102940. [Google Scholar] [CrossRef]
- Riccoboni, J.-B.; Monnet, T.; Eon, A.; Lacouture, P.; Gazeau, J.-P.; Campone, M. Biomechanical comparison between manual and motorless device assisted patient handling: Sitting to and from standing position. Appl. Ergon. 2021, 90, 103284. [Google Scholar] [CrossRef]
- NAC and AARP Public Policy Institute. Caregiving in the U.S. 2015. Available online: https://www.aarp.org/content/dam/aarp/ppi/2015/caregiving-in-the-united-states-2015-report-revised.pdf (accessed on 3 October 2024).
- Goodhead, A.; McDonald, J. Informal caregivers literature review. In A Report Prepared for the National Health Committee Health Services Research Centre: Victoria University of Wellington; Victoria University of Wellington: Wellington, New Zealand, 2007. [Google Scholar]
- Kim, W.; Huang, C.; Yun, D.; Saakes, D.; Xiong, S. Comparison of joint angle measurements from three types of motion capture systems for ergonomic postural assessment. In Proceedings of the Advances in Physical, Social & Occupational Ergonomics: Proceedings of the AHFE 2020 Virtual Conferences on Physical Ergonomics and Human Factors, Social & Occupational Ergonomics and Cross-Cultural Decision Making, Virtual, 16–20 July 2020; pp. 3–11. [Google Scholar]
- McClintock, F.A.; Callaway, A.J.; Clark, C.J.; Williams, J.M. Validity and reliability of inertial measurement units used to measure motion of the lumbar spine: A systematic review of individuals with and without low back pain. Med. Eng. Phys. 2024, 104146. [Google Scholar] [CrossRef]
- Yun, W.-S.; Kim, H.; Ahn, J.H.; Park, Y.-B.; Park, Y.-J. Individual characteristics of reliable lumbar coupling motions. Eur. Spine J. 2015, 24, 1917–1925. [Google Scholar] [CrossRef] [PubMed]
- Christodoulakis, G.; Busawon, K.; Caplan, N.; Stewart, S. On the filtering and smoothing of biomechanical data. In Proceedings of the 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), Newcastle upon Tyne, UK, 21–23 July 2010; pp. 512–516. [Google Scholar]
- Crenna, F.; Rossi, G.B.; Berardengo, M. Filtering biomechanical signals in movement analysis. Sensors 2021, 21, 4580. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A. Biomechanics and Motor Control of Human Movement; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Satpute, S.; Cooper, R.; Dicianno, B.E.; Joseph, J.; Chi, Y.; Cooper, R.A. Mini-review: Rehabilitation engineering: Research priorities and trends. Neurosci. Lett. 2021, 764, 136207. [Google Scholar] [CrossRef] [PubMed]
- Sivaprakasam, A.; Wang, H.; Cooper, R.A.; Koontz, A.M. Innovation in transfer assist technologies for persons with severe disabilities and their caregivers. IEEE Potentials 2017, 36, 34–41. [Google Scholar] [CrossRef]
- Kulich, H.R.; Wei, L.; Crytzer, T.M.; Cooper, R.A.; Koontz, A.M. Preliminary evaluation of an automated robotic transfer assist device in the home setting. Disabil. Rehabil. Assist. Technol. 2021, 18, 511–518. [Google Scholar] [CrossRef]
Mechanical Floor Lift | PPTS | Wilcoxon’s Signed Rank Test p-Values | ||||
---|---|---|---|---|---|---|
Average | ROM | Average | ROM | Average | ROM | |
Trunk flexion° | 18.73 ± 6.57 | 51.75 ± 11 | 9.76 ± 5.21 | 28.11 ± 8.7 | <0.01 | <0.001 |
Lateral bend° | 2.44 ± 1.66 | 29.43 ± 10.03 | 2.94 ± 7.2 | 16.95 ± 8.94 | 0.47 | 0.008 |
Axial rotation° | 4.84 ± 7 | 29.57 ± 12.42 | 3.34 ± 1.83 | 11.51 ± 6.27 | 0.87 | 0.001 |
Transfer time (s) | 525.82 ± 147.19 | 144.31 ± 15.94 | <0.001 | |||
Duration with flexion > 20° (s) | 282.16 ± 23.41 | 7.91 ± 8.53 | <0.001 | |||
Duration with lateral bend > 20° (s) | 28.85 ± 23.41 | 2.42 ± 2.79 | <0.001 | |||
Duration with axial rotation > 20° (s) | 35.70 ± 29.38 | 4.88 ± 5.18 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satpute, S.A.; Uribe, K.J.; Olaore, O.O.; Iizuka, M.; McCumber Gandara, I.C.; Schoy, W.J., IV; Kulkarni, R.A.; Cooper, R.; Koontz, A.M.; Flaugh, O.; et al. Time Efficiency and Ergonomic Assessment of a Robotic Wheelchair Transfer System. Sensors 2024, 24, 7558. https://doi.org/10.3390/s24237558
Satpute SA, Uribe KJ, Olaore OO, Iizuka M, McCumber Gandara IC, Schoy WJ IV, Kulkarni RA, Cooper R, Koontz AM, Flaugh O, et al. Time Efficiency and Ergonomic Assessment of a Robotic Wheelchair Transfer System. Sensors. 2024; 24(23):7558. https://doi.org/10.3390/s24237558
Chicago/Turabian StyleSatpute, Shantanu A., Kaylee J. Uribe, Oluwatofunmi O. Olaore, Minori Iizuka, Ian C. McCumber Gandara, William J. Schoy, IV, Rutuja A. Kulkarni, Rosemarie Cooper, Alicia M. Koontz, Owen Flaugh, and et al. 2024. "Time Efficiency and Ergonomic Assessment of a Robotic Wheelchair Transfer System" Sensors 24, no. 23: 7558. https://doi.org/10.3390/s24237558
APA StyleSatpute, S. A., Uribe, K. J., Olaore, O. O., Iizuka, M., McCumber Gandara, I. C., Schoy, W. J., IV, Kulkarni, R. A., Cooper, R., Koontz, A. M., Flaugh, O., & Cooper, R. A. (2024). Time Efficiency and Ergonomic Assessment of a Robotic Wheelchair Transfer System. Sensors, 24(23), 7558. https://doi.org/10.3390/s24237558