Detection of Apple Proliferation Disease Using Hyperspectral Imaging and Machine Learning Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Data Collection
2.3. Spectral Imaging
2.4. Image Processing
2.4.1. Automated Processing of AP-FTS Data
2.4.2. Differences and Extensions for the Interactive Processing of AP-ITP Data
2.5. Feature Extraction and Machine Learning
2.5.1. Feature Extraction
- Spectral reflectance;
- Normalized spectral reflectance;
- Dimensionality reduced spectral data;
- Spatial–spectral data;
- Selected spectral indices.
2.5.2. Machine Learning
- Experiments using own implementations of ML algorithms;
- Experiments using the suite of provided ML algorithms.
- Identify the most relevant wavelength bands for detection of apple proliferation;
- Identify the best feature space–classifier combinations to solve the detection problem;
- Better understand the options and limitations of automated diagnosis of the disease;
- Propose an approach for implementation of disease detection.
- Decision trees with different levels of pruning;
- Ensemble methods based upon decision trees;
- Support vector machines with different kernels;
- Neural networks with different topologies.
2.6. PCR Analysis
3. Results
3.1. Regression of qPCR Values to Estimate Infection Levels (AP-ITP-1)
3.2. Feature Relevance and Classification Performance Using Spectral Data in Controlled Experiments (AP-ITP-2, AP-ITP-3)
3.3. Spectral Indices as a Means for Dimensionality Reduction and Data Visualization
3.4. Classifier Performance and Model Selection Using Spectral Data and Samples from Orchards (AP-FTS)
3.5. Evaluation of Spatial–Spectral Classification for Leaf Samples from Orchards (AP-FTS)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seemüller, E.; Carraro, L.; Jarausch, W.; Schneider, B. Apple Proliferation Phytoplasma. In Virus and Virus-like Diseases of Pome and Stone Fruits; Hadidi, A., Barba, M., Candresse, T., Jelkmann, W., Eds.; APS Press: Saint Paul, MN, USA, 2011; pp. 67–73. ISBN 978-0-89054-396-2. [Google Scholar] [CrossRef]
- Jarausch, B.; Tedeschi, R.; Sauvion, N.; Gross, J.; Jarausch, W. Psyllid vectors. In Phytoplasmas: Plant Pathogenic Bacteria—II. Transmission and Management of Phytoplasma—Associated Diseases; Bertaccini, A., Weintraub, P.G., Rao, G.P., Mori, N., Eds.; Springer: Singapore, 2019; pp. 53–78. [Google Scholar] [CrossRef]
- Barthel, D.; Fischnaller, S.; Letschka, T.; Janik, J.; Mittelberger, C.; Öttl, S.; Panassiti, B.; Angeli, G.; Baldessari, M.; Bianchedi, P.L.; et al. Scopazzi del Melo: Stato Attuale della Ricerca—Apfeltriebsucht: Aktueller Stand der Forschung; Janik, K., Barthel, D., Oppedisano, T., Anfora, G., Eds.; Fondazione Edmund Mach: San Michele all’Adige, Italy; Centro di Sperimentazione Laimburg: Ora, Italy, 2020; pp. 1–153. ISBN 9788878430532. [Google Scholar]
- Jarausch, W.; Runne, M.; Schwind, N.; Jarausch, B.; Knauer, U. Phytoplasma-Induced Leaf Reddening as a Monitoring Symptom of Apple Proliferation Disease with Regard to the Development of Remote Sensing Strategies. Agronomy 2024, 14, 376. [Google Scholar] [CrossRef]
- Mattedi, L.; Forno, F.; Branz, A.; Bragagna, P.; Battocletti, I.; Gualandri, V.; Pedrazzoli, F.; Bianchedi, P.; Deromedi, M.; Filippi, M.; et al. Come riconoscere la malattia in campo: Novità sulla sintomatologia. In Scopazzi del Melo—Apple Proliferation; Ioriatti, C., Jarausch, W., Eds.; Fondazione Edmund Mach: San Michele all’Adige, Italy, 2008; pp. 41–50. [Google Scholar]
- Öttl, S.; Baric, S.; Dalla Via, J. Teilweise Rotfärbung weist nicht auf Apfeltriebsucht hin. Obstbau Weinbau 2008, 2, 58–59. [Google Scholar]
- Mittelberger, C.; Pichler, C.; Yalcinkaya, H.; Erhart, T.; Gasser, J.; Schumacher, S.; Janik, K.; Robatscher, P.; Kräutler, B.; Oberhuber, M. Pathogen-Induced Leaf Chlorosis: Products of Chlorophyll Breakdown Found in Degreened Leaves of Phytoplasma-Infected Apple (Malus × domestica Borkh.) and Apricot (Prunus armeniaca L.) Trees Relate to the Pheophorbide a Oxygenase/Phyllobilin Pathway. J. Agric. Food Chem. 2017, 65, 2651–2660. [Google Scholar] [CrossRef] [PubMed]
- Barthel, D.; Dordevic, N.; Fischnaller, S.; Kerschbamer, C.; Messner, M.; Eisenstecken, D.; Robatscher, P.; Janik, K. Detection of apple proliferation disease in Malus × domestica by near infrared reflectance analysis of leaves. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 263, 120178. [Google Scholar] [CrossRef]
- Barthel, D.; Cullinan, C.; Mejia-Aguilar, A.; Chuprikova, E.; McLeod, B.A.; Kerschbamer, C.; Trenti, M.; Monsorno, R.; Prechsl, U.E.; Janik, K. Identification of spectral ranges that contribute to phytoplasma detection in apple trees—A step towards an on-site method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 303, 123246. [Google Scholar] [CrossRef]
- Al-Saddik, H.; Simon, J.C.; Cointault, F. Development of spectral disease indices for ‘Flavescence dorée’ grapevine disease identification. Sensors 2017, 17, 2772. [Google Scholar] [CrossRef]
- Al-Saddik, H.; Simon, J.-C.; Cointault, F. Assessment of the optimal spectral bands for designing a sensor for vineyard disease detection: The case of “Flavescence dorée”. Precis. Agric. 2019, 20, 398–422. [Google Scholar] [CrossRef]
- Bendel, N.; Backhaus, A.; Kicherer, A.; Köckerling, J.; Maixner, M.; Jarausch, B.; Biancu, S.; Klück, H.-C.; Seiffert, U.; Voegele, R.T.; et al. Detection of Two Different Grapevine Yellows in Vitis vinifera Using Hyperspectral Imaging. Remote Sens. 2020, 12, 4151. [Google Scholar] [CrossRef]
- Thomas, S.; Kuska, M.T.; Bohnenkamp, D.; Brugger, A.; Alisaac, E.; Wahabzada, M.; Behmann, J.; Mahlein, A.-K. Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective. J. Plant Dis. Plant Protect. 2018, 125, 5–20. [Google Scholar] [CrossRef]
- Mahlein, A.-K.; Kuska, M.T.; Behmann, J.; Polder, G.; Walter, A. Hyperspectral sensors and imaging technologies in phytopathology: State of the art. Ann. Rev. Phytopathol 2018, 56, 535–558. [Google Scholar] [CrossRef]
- Lasalle, G. Monitoring natural and anthropogenic plant stressors by hyperspectral remote sensing: Recommendations and guidelines based on a meta-review. Sci. Total Environ. 2021, 788, 147758. [Google Scholar] [CrossRef] [PubMed]
- Pantazi, X.E.; Moshou, D.; Oberti, R.; West, J.; Mouazen, A.M.; Bochtis, D. Detection of Biotic and Abiotic Stresses in Crops by Using Hierarchical Self Organizing Classifiers. Precis. Agric. 2017, 18, 383–393. [Google Scholar] [CrossRef]
- Almoujahed, M.B.; Rangarajan, A.K.; Whetton, R.L.; Vincke, D.; Eylenbosch, D.; Vermeulen, P.; Mouazen, A.M. Detection ofFusarium Head Blight in Wheat under Field Conditions Using a Hyperspectral Camera and Machine Learning. Comput. Electron. Agric. 2022, 203, 107456. [Google Scholar] [CrossRef]
- Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data. Remote Sens. 2015, 7, 16398–16421. [Google Scholar] [CrossRef]
- Jang, S.; Han, J.; Cho, J.; Jung, J.; Lee, S.; Lee, D.; Kim, J. Estimation of Apple Leaf Nitrogen Concentration Using Hyperspectral Imaging-Based Wavelength Selection and Machine Learning. Horticulturae 2024, 10, 35. [Google Scholar] [CrossRef]
- Jiang, D.; Chang, Q.; Zhang, Z.; Liu, Y.; Zhang, Y.; Zheng, Z. Monitoring the Degree of Mosaic Disease in Apple Leaves Using Hyperspectral Images. Remote Sens. 2023, 15, 2504. [Google Scholar] [CrossRef]
- Boochs, F.; Kupfer, G.; Dockter, K.; Kühbauch, W. Shape of the red edge as vitality indicator for plants. Int. J. Remote Sens. 1990, 11, 1741–1753. [Google Scholar] [CrossRef]
- Sharifi, A. Remotely sensed vegetation indices for crop nutrition mapping. J. Sci. Food Agric. 2020, 100, 5191–5196. [Google Scholar] [CrossRef]
- Delalieux, S.; Somers, B.; Verstraeten, W.W.; van Aardt, J.A.N.; Keulemans, W.; Coppin, P. Hyperspectral indices to diagnose leaf biotic stress of apple plants, considering leaf phenology. Int. J. Remote Sens. 2009, 30, 1887–1912. [Google Scholar] [CrossRef]
- Kim, Y.J.; Glenn, D.M.; Park, J.; Ngugi, H.K.; Lehman, B.L. Hyperspectral image analysis for water stress detection of apple trees. Comput. Electron. Agric. 2011, 77, 155–160. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS J. Photogramm. Remote Sens. 2015, 102, 222–231. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, P.; Liu, H.; Fan, P.; Zeng, P.; Liu, X.; Feng, C.; Wang, W.; Yang, F. Gradient boosting estimation of the leaf area index of apple orchards in UAV remote sensing. Remote Sens. 2021, 13, 3263. [Google Scholar] [CrossRef]
- Li, C.; Zhu, X.; Wei, Y.; Cao, S.; Guo, X.; Yu, X.; Chang, C. Estimating apple tree canopy chlorophyll content based on Sentinel-2A remote sensing imaging. Sci. Rep. 2018, 8, 3756. [Google Scholar] [CrossRef] [PubMed]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef]
- Jarausch, B.; Schwind, N.; Fuchs, A.; Jarausch, W. Characteristics of the spread of apple proliferation by its vector Cacopsylla picta. Phytopathology 2011, 101, 1471–1480. [Google Scholar] [CrossRef]
- Lenhard, K.; Baumgartner, A.; Schwarzmaier, T. Independent Laboratory Characterization of NEO HySpex Imaging Spectrometers VNIR-1600 and SWIR-320m-e. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1828–1841. [Google Scholar] [CrossRef]
- Knauer, U.; von Rekowski, C.S.; Stecklina, M.; Krokotsch, T.; Pham Minh, T.; Hauffe, V.; Kilias, D.; Ehrhardt, I.; Sagischewski, H.; Chmara, S.; et al. Tree Species Classification Based on Hybrid Ensembles of a Convolutional Neural Network (CNN) and Random Forest Classifiers. Remote Sens. 2019, 11, 2788. [Google Scholar] [CrossRef]
- Knauer, U.; Matros, A.; Petrovic, T.; Zanker, T.; Scott, E.S.; Seiffert, U. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images. Plant Methods 2017, 13, 47. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis; Springer Series in Statistics; Springer: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- MacQueen, J.B. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability; Le Cam, L.M., Neyman, J., Eds.; University of California Press: Berkeley, CA, USA, 1967; Volume 1, pp. 281–297. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Grieco, M.; Schmidt, M.; Warnemünde, S.; Backhaus, A.; Klück, H.-C.; Garibay, A.; Moya, Y.A.T.; Jozefowicz, A.M.; Mock, H.-P.; Seiffert, U.; et al. Dynamics and genetic regulation of leaf nutrient concentration in barley based on hyperspectral imaging and machine learning. Plant Sci. 2022, 315, 111123. [Google Scholar] [CrossRef]
- Bendel, N.; Kicherer, A.; Backhaus, A.; Klück, H.-C.; Seiffert, U.; Fischer, M.; Voegele, R.T.; Töpfer, R. Evaluating the suitability of hyper- and multispectral imaging to detect foliar symptoms of the grapevine trunk disease Esca in vineyards. Plant Methods 2020, 16, 142. [Google Scholar] [CrossRef] [PubMed]
- Fritzke, B. A growing neural gas network learns topologies. In Proceedings of the 7th International Conference on Neural Information Processing Systems (NIPS’94), Denver, CO, USA, 1 January 1994; MIT Press: Cambridge, MA, USA, 1994; pp. 625–632. [Google Scholar]
- Huang, S.; Tang, L.; Hupy, J.P.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Davidson, C.; Jaganathan, V.; Sivakumar, A.N.; Czarnecki, J.M.P.; Chowdhary, G. NDVI/NDRE prediction from standard RGB aerial imagery using deep learning. Comput. Electron. Agric. 2022, 203, 107396. [Google Scholar] [CrossRef]
- Kohzuma, K.; Hikosaka, K. Physiological validation of photochemical reflectance index (PRI) as a photosynthetic parameter using Arabidopsis thaliana mutants. Biochem. Biophys. Res. Commun. 2018, 498, 52–57. [Google Scholar] [CrossRef] [PubMed]
- El-Shikha, D.E.; Barnes, E.; Clarke, T.; Hunsaker, D.; Haberland, J.; Pinter, P.; Waller, P.; Thompson, T.L. Remote Sensing of Cotton Nitrogen Status Using the Canopy Chlorophyll Content Index (CCCI). Trans. ASABE 2008, 51, 73–82. [Google Scholar] [CrossRef]
- Gobron, N.; Pinty, B.; Verstraete, M.M.; Widlowski, J.-L. Advanced vegetation indices optimized for up-coming sensors: Design, performance, and applications. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2489–2505. [Google Scholar] [CrossRef]
- Lorenz, K.H.; Schneider, B.; Ahrens, U.; Seemüller, E. Detection of the apple proliferation and pear decline phytoplasmas by PCR amplification of ribosomal and nonribosomal DNA. Phytopathology 1995, 85, 771–776. [Google Scholar] [CrossRef]
- Jarausch, W.; Peccerella, T.; Schwind, N.; Jarausch, B.; Krczal, G. Establishment of a quantitative real-time PCR assay for the quantification of apple proliferation phytoplasmas in plants and insects. Acta Hort. 2004, 657, 415–420. [Google Scholar] [CrossRef]
- Liebenberg, A. Influence of Latent Apple Viruses on Malus sieboldii-Derived Apple Proliferation Resistant Rootstocks. Doctoral Dissertation, Heidelberg University, Heidelberg, Germany, 2013; 165p. [Google Scholar] [CrossRef]
- Kononenko, I.; Šimec, E.; Robnik-Šikonja, M. Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF. Appl. Intell. 1997, 7, 39–55. [Google Scholar] [CrossRef]
- Zorer, R.; Bianchedi, P.L.; Mattedi, L.; Branz, A. Arrossamento fogliare autunnale. Relazioni con la presenza del fitoplasma e possibili utilizzi nel monitoraggio prossimale o remoto. In Scopazzi del Melo—Apple Proliferation; Ioriatti, C., Jarausch, W., Eds.; Fondazione Edmund Mach: San Michele all’Adige, Italy, 2008; pp. 51–62. [Google Scholar]
- Kicherer, A.; Herzog, K.; Pflanz, M.; Wieland, M.; Rüger, P.; Kecke, S.; Kuhlmann, H.; Töpfer, R. An automated phenotyping pipeline for application in grapevine research. Sensors 2015, 15, 4823–4836. [Google Scholar] [CrossRef]
- Jarausch, W.; Menz, P.; Al Masri, A.; Runne, R.; Thielert, B.; Kohler, K.; Warnemünde, S.; Kilias, D.; Jarausch, B.; Knauer, U. Digital Phytoplasmology: Remote sensing of fruit tree phytoplasma diseases. Phytopath. Mollicutes 2023, 13, 135–136. [Google Scholar] [CrossRef]
Region | 2019 | 2020 | |||
---|---|---|---|---|---|
Orchard Code | Cultivar | N° Symptomatic Leaves | N° Healthy Leaves | N° Symptomatic Leaves | N° Healthy Leaves |
Vorderpfalz | |||||
Nied1 | Golden Delicious | 12 | 4 | 32 | 8 |
NW5 | Rubinette | 40 | 4 | 8 | 16 |
NW13 | Ambasie | 8 | 4 | ||
NW13 | Axam | 16 | 0 | ||
NW14 | Delbarestivale | 24 | 0 | 16 | 36 |
NW14 | Falstaff | 20 | 0 | ||
NW14 | Jonagold | 16 | 0 | 4 | 4 |
NW14 | Pink Lady | 20 | 0 | ||
NW14 | Pinova | 20 | 4 | 16 | 16 |
NW14 | Rubinola | 20 | 4 | 4 | 24 |
NW14 | Topaz | 52 | 4 | 44 | 8 |
NW16 | unknown | 72 | 24 | ||
NW17 | Berlepsch | 24 | 0 | ||
NW17 | Boskoop | 36 | 4 | ||
NW17 | Fuji Yataka | 12 | 0 | ||
NW17 | Gala | 16 | 0 | 28 | 12 |
NW17 | Idared | 0 | 4 | ||
NW17 | Jonagold | 32 | 0 | 24 | 4 |
NW17 | Melrose | 24 | 0 | ||
NW17 | Pinova | 8 | 0 | ||
Südpfalz | |||||
47e | Golden Delicious | 52 | 0 | ||
KKA1 | Gala | 40 | 0 | 4 | 0 |
KKA1 | Jonagold | 28 | 0 | ||
IlbA1 | unknown | 20 | 8 | ||
IlbA3 | unknown | 4 | 0 | ||
IlbA7 | unknown | 8 | 0 | ||
LeiA4 | Delbarestivale | 4 | 0 | ||
LeiA4 | Gala | 16 | 0 | ||
LeiA4 | Pilot | 0 | 4 | ||
LeiA4 | Pinova | 4 | 0 | ||
LeiA7 | Braeburn | 12 | 0 | 8 | 4 |
LeiA7 | Celest | 16 | 4 | ||
LeiA7 | Gala Royal | 24 | 0 | 28 | 0 |
LeiA7 | Pilot | 20 | 0 | 4 | 0 |
LeiA7 | Rubinette | 16 | 0 | ||
total | 672 | 72 | 284 | 132 |
VNIR 1800 | VNIR 1600 | SWIR 384 | SWIR 320m-e | |
---|---|---|---|---|
Spectral range [nm] | 400–1000 | 416–992 | 930–2500 | 968–2497 |
Spatial pixels | 1800 | 1600 | 384 | 320 |
Spectral bands | 186 | 160 | 288 | 256 |
Spectral sampling [nm] | 3.26 | 3.6 | 5.45 | 6 |
Framerate [fps] | 260 | 135 | 400 | 100 |
Radiometric quantization [bit] | 16 | 12 | 16 | 14 |
Spectral Index | Definition | Reference |
---|---|---|
Normalized difference vegetation index (NDVI) | (R800 − R670)/(R800 + R670) | Huang et al. (2020) [39] |
Normalized difference red edge (NDRE) 1 | (R790 − R720)/(R790 + R720) | Davidson et al. (2022) [40] |
Physiological reflectance index (PRI) | (R531 − R570)/(R531 + R570) | Kohzuma et al. (2018) [41] |
(Canopy) chlorophyll content index (CCI) | NDRE/NDVI | El-Shikha et al. (2008) [42] |
Green leaf index (GLI) | (2 × R550 − R650 − R440)/(2 × R550 + R650 + R440) | Gobron et al. (2000) [43] |
Method | Hyperparameters | Preselection | PCA | Features | RMSE |
---|---|---|---|---|---|
Linear regression | RReliefF (20) | x | 10 | 17.76 | |
none | x | 10 | 16.867 | ||
Ensemble of regression trees | Bagging (Random Forest) | RReliefF (20) | x | 10 | 17.596 |
none | x | 5 | 19.793 | ||
Support Vector Regression | Linear kernel | RReliefF (20) | x | 10 | 18.143 |
none | x | 10 | 16.867 | ||
Gaussian kernel (scale 3.2) | RReliefF (20) | x | 10 | 16.345 | |
MRMR (20) | x | 10 | 16.698 | ||
Gaussian Process Regression | Exponential GPR | RReliefF (20) | x | 10 | 14.491 |
none | 186 | 17.968 | |||
none | x | 5 | 17.438 | ||
none | x | 10 | 15.938 | ||
F-test (20) | x | 10 | 18.5 | ||
MRMR (20) | x | 10 | 16.195 | ||
RReliefF (20) | 20 | 18.138 |
Infected | Healthy | ||
VNIR | Infected | 0.983 | 0.017 |
Healthy | 0.041 | 0.959 | |
Infected | Healthy | ||
SWIR | Infected | 0.972 | 0.028 |
Healthy | 0.029 | 0.971 |
Method | Hyperparameters | VNIR 2019 | VNIR 2020 | SWIR 2019 | SWIR 2020 |
---|---|---|---|---|---|
Decision Tree | GINI diversity index, max 100 splits | 0.639 | 0.66 | 0.624 | 0.688 |
GINI diversity index, max 20 splits | 0.645 | 0.656 | 0.617 | 0.676 | |
GINI diversity index, max 4 splits | 0.603 | 0.641 | 0.597 | 0.665 | |
Ensembles of decision trees | Bagging (Random Forest) | 0.673 | 0.7 | 0.645 | 0.731 |
Boosting | 0.665 | 0.676 | 0.642 | 0.697 | |
Support Vector Machines | linear kernel | 0.654 | 0.662 | 0.634 | 0.71 |
quadratic kernel | 0.664 | 0.7 | 0.685 | 0.728 | |
cubic kernel | 0.653 | 0.676 | 0.646 | 0.713 | |
Gaussian kernel | 0.678 | 0.7 | 0.65 | 0.708 | |
Neural Networks 10 neurons per layer, ReLU, Bayesian optimization | 1 layer | 0.631 | 0.678 | 0.662 | 0.721 |
MLP 2 layers | 0.652 | 0.676 | 0.66 | 0.728 | |
MLP 3 layers | 0.644 | 0.682 | 0.659 | 0.723 |
Method | Hyperparameters | VNIR 2019 | VNIR 2020 | SWIR 2019 | SWIR 2020 |
---|---|---|---|---|---|
Decision Tree | GINI diversity index, max 100 splits | 0.7 | 0.69 | 0.693 | 0.709 |
GINI diversity index, max 20 splits | 0.689 | 0.689 | 0.676 | 0.723 | |
GINI diversity index, max 4 splits | 0.672 | 0.687 | 0.662 | 0.714 | |
Ensembles of decision trees | Bagging (Random Forest) | 0.741 | 0.693 | 0.751 | 0.731 |
Boosting | 0.696 | 0.694 | 0.686 | 0.734 | |
Support Vector Machines | linear kernel | 0.654 | 0.689 | 0.67 | 0.733 |
quadratic kernel | 0.673 | 0.686 | 0.702 | 0.729 | |
cubic kernel | 0.599 | 0.537 | 0.7 | 0.715 | |
Gaussian kernel | 0.738 | 0.702 | 0.751 | 0.733 | |
Neural Networks 10 neurons per layer, ReLU, Bayesian optimization | 1 layer | 0.704 | 0.695 | 0.697 | 0.713 |
MLP 2 layers | 0.714 | 0.698 | 0.702 | 0.71 | |
MLP 3 layers | 0.718 | 0.698 | 0.7 | 0.711 | |
Improvement over spectral analysis | +0.063 | +0.002 | +0.066 | +0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knauer, U.; Warnemünde, S.; Menz, P.; Thielert, B.; Klein, L.; Holstein, K.; Runne, M.; Jarausch, W. Detection of Apple Proliferation Disease Using Hyperspectral Imaging and Machine Learning Techniques. Sensors 2024, 24, 7774. https://doi.org/10.3390/s24237774
Knauer U, Warnemünde S, Menz P, Thielert B, Klein L, Holstein K, Runne M, Jarausch W. Detection of Apple Proliferation Disease Using Hyperspectral Imaging and Machine Learning Techniques. Sensors. 2024; 24(23):7774. https://doi.org/10.3390/s24237774
Chicago/Turabian StyleKnauer, Uwe, Sebastian Warnemünde, Patrick Menz, Bonito Thielert, Lauritz Klein, Katharina Holstein, Miriam Runne, and Wolfgang Jarausch. 2024. "Detection of Apple Proliferation Disease Using Hyperspectral Imaging and Machine Learning Techniques" Sensors 24, no. 23: 7774. https://doi.org/10.3390/s24237774
APA StyleKnauer, U., Warnemünde, S., Menz, P., Thielert, B., Klein, L., Holstein, K., Runne, M., & Jarausch, W. (2024). Detection of Apple Proliferation Disease Using Hyperspectral Imaging and Machine Learning Techniques. Sensors, 24(23), 7774. https://doi.org/10.3390/s24237774