Embedded Spatial–Temporal Convolutional Neural Network Based on Scattered Light Signals for Fire and Interferential Aerosol Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aerosol Optical Classification Mechanism
2.2. Dataset for Classification
2.3. Embedded Spatial–Temporal Convolution Neural Network
3. Results and Discussion
3.1. Experimental Platform and Datasets
3.2. Classification Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baek, J.; Alhindi, T.J.; Jeong, Y.; Jeong, M.K.; Seo, S.; Kang, J.; Shim, W.; Heo, Y. Real-time fire detection system based on dynamic time warping of multichannel sensor networks. Fire Saf. J. 2021, 123, 103364. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Y.; Zhang, Q.; Lin, G.; Wang, J. Deep domain adaptation based video smoke detection using synthetic smoke images. Fire Saf. J. 2017, 93, 53–59. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Y.; Zhang, Q.; Lin, G.; Wang, Z.; Jia, Y.; Wang, J. Video smoke detection based on deep saliency network. Fire Saf. J. 2019, 105, 277–285. [Google Scholar] [CrossRef]
- Li, C.; Yang, B.; Ding, H.; Shi, H.; Jiang, X.; Sun, J. Real-time video-based smoke detection with high accuracy and efficiency. Fire Saf. J. 2020, 117, 103184. [Google Scholar] [CrossRef]
- Huo, Y.; Zhang, Q.; Zhang, Y.; Zhu, J.; Wang, J. 3DVSD: An end-to-end 3D convolutional object detection network for video smoke detection. Fire Saf. J. 2022, 134, 103690. [Google Scholar] [CrossRef]
- Jang, H.; Hwang, C. Obscuration threshold database construction of smoke detectors for various combustibles. Sensors 2020, 20, 6272. [Google Scholar] [CrossRef] [PubMed]
- Cleary, T.; Taylor, G. Evaluation of empirical evidence against zone models for smoke detector activation prediction. Fire Technol. 2023, 59, 3129–3156. [Google Scholar] [CrossRef]
- Pundir, A.S.; Raman, B. Dual deep learning model for image-based smoke detection. Fire Technol. 2019, 55, 2419–2442. [Google Scholar] [CrossRef]
- Liu, T.; Cheng, J.; Du, X.; Luo, X.; Zhang, L.; Cheng, B.; Wang, Y. Video smoke detection method based on change-cumulative image and fusion deep network. Sensors 2019, 19, 5060. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, F.; Lou, L.; Cheng, P.; Huang, Y. Real-time detection of full-scale forest fire smoke based on deep convolution neural network. Remote Sens. 2022, 14, 536. [Google Scholar] [CrossRef]
- Li, X.; Sáez, J.S.R.; Vázquez-López, A.; Ao, X.; Díaz, R.S.; Wang, D. Eco-friendly functional cellulose paper as a fire alarming via wireless warning transmission for indoor fireproofing. Ind. Crop. Prod. 2023, 200, 116805. [Google Scholar] [CrossRef]
- Festag, S. False alarm ratio of fire detection and fire alarm systems in Germany-A meta analysis. Fire Saf. J. 2016, 79, 119–126. [Google Scholar] [CrossRef]
- Jiang, M.; Zhao, Y.; Yu, F.; Zhou, C.; Peng, T. A self-attention network for smoke detection. Fire Saf. J. 2022, 129, 103547. [Google Scholar] [CrossRef]
- Lin, M.; Zhu, M.; Xiao, X.; Li, C.; Wu, J. Optical sensor for combustion aerosol particle size distribution measurement based on embedded chip with low-complexity Mie scattering algorithm. Opt. Laser Technol. 2023, 158, 108791. [Google Scholar] [CrossRef]
- Lin, M.; Zhu, M.; Li, C. Aerosol Sauter mean diameter measurement based on the light scattering response of the combined particle volume-surface area. Opt. Express 2023, 31, 3490–3503. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Zhu, M.; Li, C.; Chen, Y. In situ optical sensor for aerosol ovality and size. Sens. Actuators A Phys. 2022, 347, 113963. [Google Scholar] [CrossRef]
- Loepfe, M.; Ryser, P.; Tompkin, C.; Wieser, D. Optical properties of fire and non-fire aerosols. Fire Saf. J. 1997, 29, 185–194. [Google Scholar] [CrossRef]
- Chaudhry, T.; Moinuddin, K. Method of identifying burning material from its smoke using attenuation of light. Fire Saf. J. 2017, 93, 84–97. [Google Scholar] [CrossRef]
- Qu, N.; Li, Z.; Li, X.; Zhang, S.; Zheng, T. Multi-parameter fire detection method based on feature depth extraction and stacking ensemble learning model. Fire Saf. J. 2022, 128, 103541. [Google Scholar] [CrossRef]
- Yu, M.; Yuan, H.; Li, K.; Wang, J. Research on multi-detector real-time fire alarm technology based on signal similarity. Fire Saf. J. 2023, 136, 103724. [Google Scholar] [CrossRef]
- Liu, G.; Yuan, H.; Huang, L. A fire alarm judgment method using multiple smoke alarms based on Bayesian estimation. Fire Saf. J. 2023, 136, 103733. [Google Scholar] [CrossRef]
- Zheng, R.; Lu, S.; Shi, Z.; Li, C.; Jia, H.; Wang, S. Research on the aerosol identification method for the fire smoke detection in aircraft cargo compartment. Fire Saf. J. 2022, 130, 103574. [Google Scholar] [CrossRef]
- Mie, G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys. 1908, 330, 377–445. [Google Scholar] [CrossRef]
- Xie, Q.; Yuan, H.; Guo, H. Experimental study on false alarms of smoke detectors caused by kitchen oil fume. Fire Sci. Technol. 2003, 22, 504–507. [Google Scholar] [CrossRef]
- Jackson, M.A.; Robins, I. Gas sensing for fire detection: Measurements of CO, CO2, H2, O2, and smoke density in European standard fire tests. Fire Saf. J. 1994, 22, 181–205. [Google Scholar] [CrossRef]
- ISO 7240-9; Fire Detection and Alarm Systems—Part 9: Test Fires for Fire Detectors. ISO: Geneva, Switzerland, 2012.
- Shen, L.; Mei, Z.; Zheng, W. Research on multi-information data of cooking fumes in standard combustion room. Fire Saf. Sci. 2008, 17, 25–29. [Google Scholar] [CrossRef]
- Coffey, E.R.; Pfotenhauer, D.; Mukherjee, A. Kitchen area air quality measurements in northern Ghana: Evaluating the performance of a low-cost particulate sensor within a household energy study. Atmosphere 2019, 400, 400. [Google Scholar] [CrossRef]
- Tam, W.C.; Fu, E.Y.; Mensch, A.; Hamins, A.; You, C.; Ngai, G.; Leong, H. Prevention of cooktop ignition using detection and multi-step machine learning algorithms. Fire Saf. J. 2021, 120, 103043. [Google Scholar] [CrossRef]
Aerosol | Beech Smoke (TF2) | Cotton Smoke (TF3) | Polyurethane Smoke (TF4) | N-Heptane Smoke (TF5) | Oil Fume (Interferential Aerosol) | Dust (Interferential Aerosol) | Water Mist (Interferential Aerosol) |
---|---|---|---|---|---|---|---|
Label | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
Feature dataset |
Beech Smoke | Optical Channel 1 | Optical Channel 2 | Optical Channel 3 | Optical Channel 4 |
---|---|---|---|---|
Time 1 | ||||
Time 2 | ||||
Time 3 | ||||
Time 4 |
Set | Layer Number | Layer Type | Input Channel | Output Channel | Convolutional Kernel Size | Stride | Padding | Parameters | FLOPs | Classification Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | Conv | 8 | 16 | 1 | 1 | 67 kB | 0.15 M | 98.96% | |
2 | Conv | 16 | 32 | 1 | 0 | 1.81 M | ||||
3 | Conv | 32 | 64 | 1 | 0 | 15.75 M | ||||
2 | 1 | Conv | 8 | 32 | 1 | 1 | 158 kB | 0.29 M | 99.04% | |
2 | Conv | 32 | 64 | 1 | 0 | 33.18 M | ||||
3 | Conv | 64 | 64 | 1 | 0 | 130.06 M | ||||
3 | 1 | Conv | 8 | 32 | 1 | 1 | 295 kB | 0.29 M | 99.09% | |
2 | Conv | 32 | 128 | 1 | 0 | 66.36 M | ||||
3 | Conv | 128 | 64 | 1 | 0 | 1057.03 M | ||||
4 | 1 | Conv | 8 | 16 | 1 | 1 | 67 kB | 0.15 M | 98.89% | |
2 | Conv | 16 | 32 | 2 | 1 | 0.67 M | ||||
3 | Conv | 32 | 64 | 1 | 0 | 15.75 M | ||||
5 | 1 | Conv | 8 | 16 | 1 | 1 | 67 kB | 0.15 M | 98.84% | |
2 | Conv | 16 | 32 | 2 | 1 | 0.67 M | ||||
3 | Conv | 32 | 64 | 2 | 0 | 4.19 M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Zhu, M.; Lin, M.; Wang, M.; Chen, L. Embedded Spatial–Temporal Convolutional Neural Network Based on Scattered Light Signals for Fire and Interferential Aerosol Classification. Sensors 2024, 24, 778. https://doi.org/10.3390/s24030778
Xu F, Zhu M, Lin M, Wang M, Chen L. Embedded Spatial–Temporal Convolutional Neural Network Based on Scattered Light Signals for Fire and Interferential Aerosol Classification. Sensors. 2024; 24(3):778. https://doi.org/10.3390/s24030778
Chicago/Turabian StyleXu, Fang, Ming Zhu, Mengxue Lin, Maosen Wang, and Lei Chen. 2024. "Embedded Spatial–Temporal Convolutional Neural Network Based on Scattered Light Signals for Fire and Interferential Aerosol Classification" Sensors 24, no. 3: 778. https://doi.org/10.3390/s24030778
APA StyleXu, F., Zhu, M., Lin, M., Wang, M., & Chen, L. (2024). Embedded Spatial–Temporal Convolutional Neural Network Based on Scattered Light Signals for Fire and Interferential Aerosol Classification. Sensors, 24(3), 778. https://doi.org/10.3390/s24030778