Reference-Free Vibration-Based Damage Identification Techniques for Bridge Structural Health Monitoring—A Critical Review and Perspective
Abstract
:1. Introduction
2. The Reference State in Vibration-Based Damage Identification
3. Reference-Free Vibration-Based DITs
4. Reference-Free Time Domain-Based Techniques
4.1. Fundamental Steps
4.2. Review of Reference-Free Time Domain-Based Techniques
5. Reference-Free Space Domain-Based Techniques
5.1. Variations in Reference-Free Space Domain-Based Techniques
5.2. Review of Space Domain-Based Techniques Using the Curve-Fitting Approach
5.3. Review of Space Domain-Based Techniques Using Wavelet Transform (WT) Approach
6. Summary and Guideline on the Use of Reference-Free Time and Space Domain Techniques
7. Summary and Conclusions
8. Recommendation for Further Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miki, C. Bridge engineering learned from failures—Fatigue and fracture control. In Proceedings of the 2nd International Conference on Bridge Maintenance, Safety and Management, IABMAS’04, Kyoto, Japan, 18–22 October 2004; pp. 11–20. [Google Scholar]
- Kong, X.; Cai, C.; Hu, J. The State-of-the-Art on Framework of Vibration-Based Structural Damage Identification for Decision Making. Appl. Sci. 2017, 7, 497. [Google Scholar] [CrossRef]
- Hao, S. I-35W Bridge Collapse. J. Bridge Eng. 2010, 15, 608–614. [Google Scholar] [CrossRef]
- Modares, M.; Waksmanski, N. Overview of Structural Health Monitoring for Steel Bridges. Pract. Period. Struct. Des. Constr. 2013, 18, 187–191. [Google Scholar] [CrossRef]
- Choudhury, J.R.; Hasnat, A. Bridge collapses around the world: Causes and mechanisms. In Proceedings of the IABSE-JSCE Joint Conference on Advances in Bridge Engineering-III, Dhaka, Bangladesh, 21–22 August 2015; pp. 26–34. [Google Scholar]
- Yang, Y.; Zhang, Y.; Tan, X. Review on Vibration-Based Structural Health Monitoring Teqniques and Technical Codes. Symmetry 2021, 13, 1998. [Google Scholar] [CrossRef]
- Matos, J.C.; Nicoletti, V.; Kralovanec, J.; Sousa, H.S.; Gara, F.; Moravcik, M.; Morais, M.J. Comparison of Condition Rating Systems for Bridges in Three European Countries. Appl. Sci. 2023, 13, 12343. [Google Scholar] [CrossRef]
- Farrar, C.R.; Worden, K. Structural Health Monitoring: A Machine Learning Perspective; John Wiley & Sons Ltd.: New York, NY, USA, 2013; p. 653. ISBN 978-1-119-99433-6. [Google Scholar]
- Carden, E.P.; Fanning, P. Vibration Based Condition Monitoring: A Review. Struct. Health Monit. 2004, 3, 355–377. [Google Scholar] [CrossRef]
- Shim, C.-S.; Dang, N.-S.; Lon, S.; Jeon, C.-H. Development of a bridge maintenance system for prestressed concrete bridges using 3D digital twin model. Struct. Infrastruct. Eng. 2019, 15, 1319–1332. [Google Scholar] [CrossRef]
- Doebling, S.W.; Farrar, C.R.; Prime, M.B.; Shevitz, D.W. Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review; Los Alamos National Laboratory Report LA-13070-MS; Los Alamos National Laboratory: Los Alamos, NM, USA, 1996; p. 127. [Google Scholar]
- Doebling, S.W.; Farrar, C.R.; Prime, M.B. A Summary Review of Vibration-Based Damage Identification Methods; Los Alamos National Laboratory Report LA-UR-98-0375; Los Alamos National Laboratory: Los Alamos, NM, USA, 1998; p. 34. [Google Scholar]
- Sohn, H.; Farrar, C.R.; Hemez, F.M.; Shunk, D.D.; Stinemates, D.W.; Nadler, B.R.; Czarnecki, J.J. A Review of Structural Health Monitoring Literature: 1996–2001; Los Alamos National Laboratory Report LA-13976-MS; Los Alamos National Laboratory: Los Alamos, NM, USA, 2004; p. 311. [Google Scholar]
- Fan, W.; Qiao, P. Vibration-Based Damage Identification Methods: A Review and Comparative Study. Struct. Health Monit. 2011, 10, 83–111. [Google Scholar] [CrossRef]
- Yan, Y.J.; Cheng, L.; Wu, Z.Y.; Yam, L.H. Development in vibration-based structural damage detection technique. Mech. Syst. Signal Process. 2007, 21, 2198–2211. [Google Scholar] [CrossRef]
- Das, S.; Saha, P.; Patro, S.K. Vibration-based damage detection techniques used for health monitoring of structures: A review. J. Civ. Struct. Health Monit. 2016, 6, 477–507. [Google Scholar] [CrossRef]
- Casas, J.R.; Moughty, J.J. Bridge Damage Detection Based on Vibration Data: Past and New Developments. Front. Built Environ. 2017, 3, 4. [Google Scholar] [CrossRef]
- Wahalathantri, B.L.; Thambiratnam, D.P.; Chan, T.H.; Fawzia, S. Vibration based baseline updating method to localize crack formation and propagation in reinforced concrete members. J. Sound Vib. 2015, 344, 258–276. [Google Scholar] [CrossRef]
- Anton, S.R.; Inman, D.J.; Park, G. Reference-free Damage Detection Using Instantaneous Baseline Measurements. AIAA J. 2009, 47, 1952–1964. [Google Scholar] [CrossRef]
- Rucevskis, S.; Janeliukstis, R.; Akishin, P.; Chate, A. Mode shape-based damage detection in plate structure without baseline data. Struct. Control Health Monit. 2016, 23, 1180–1193. [Google Scholar] [CrossRef]
- Wu, D.; Law, S.S. Damage localization in plate structures from uniform load surface curvature. J. Sound Vib. 2004, 276, 227–244. [Google Scholar] [CrossRef]
- Stubbs, N.; Kim, J.T. Damage Localization in Structures without Baseline Modal Parameters. AIAA J. 1996, 34, 1644–1649. [Google Scholar] [CrossRef]
- Bai, R.B.; Radzieński, M.; Cao, M.S.; Ostachowicz, W.; Su, Z. Non-baseline identification of delamination in plates using wavelet-aided fractal analysis of two-dimensional mode shapes. J. Intell. Mater. Syst. Struct. 2015, 26, 2338–2350. [Google Scholar] [CrossRef]
- Zhou, G.D.; Yi, T.H. A Summary Review of Correlations between Temperatures and Vibration Properties of Long-Span Bridges. Math. Probl. Eng. 2014, 2014, 638209. [Google Scholar] [CrossRef]
- Ko, J.M.; Ni, Y.K. Technology developments in structural health monitoring of large-scale bridges. Eng. Struct. 2005, 27, 1715–1725. [Google Scholar] [CrossRef]
- Alampalli, S. Influence of In-Service Environment on Modal Parameters. In Proceedings of the IMAC 16, the 16th International Modal Analysis Conference, Santa Barbara, CA, USA, 2–5 February 1998; pp. 111–116. [Google Scholar]
- Alampalli, S. Significance of operating environment in condition monitoring of large civil structures. Shock. Vib. 1999, 6, 247–251. [Google Scholar] [CrossRef]
- Lynch, J.; Farrar, C.R.; Michaels, J. Structural Health Monitoring: Technological Advances to Practical Implementations. Proc. IEEE 2016, 104, 1508–1512. [Google Scholar] [CrossRef]
- Farrar, C.R.; Duffey, T.A.; Cornwell, P.J.; Doebling, S.W. Excitation Methods for Bridge Structures. In Proceedings of the IMAC 17, the 17th International Modal Analysis Conference, Kissimmee, FL, USA, 8–11 February 1999; Wicks, A.L., DeMichele, D.J., Eds.; pp. 1063–1068, paper no. 323. [Google Scholar]
- Altammar, H. Damage Detection of Mixed-Mode Cracks in Large Truss Structures Using Wavelet Transform. Master’s Thesis, University of Wisconsin-Milwaukee, Milwaukee, WI, USA, May 2014. [Google Scholar]
- Gao, R.; Yan, R. Wavelets: Theory and Applications for Manufacturing; Springer Science and Business Media: New York, NY, USA, 2011; p. 224. ISBN 978-1-4419-1544-3. [Google Scholar]
- Kaloop, M.; Hu, J. Damage Identification and Performance Assessment of Regular and Irregular Buildings Using Wavelet Transform Energy. Adv. Mater. Sci. Eng. 2016, 2016, 6027812. [Google Scholar] [CrossRef]
- Sun, Z.; Chang, C.C. Structural Damage Assessment Based on Wavelet Packet Transform. J. Struct. Eng. 2002, 128, 1354–1361. [Google Scholar] [CrossRef]
- Shinde, A.; Hou, Z.K. A Wavelet Packet Based Sifting Process and its Application for Structural Health Monitoring. Struct. Health Monit. 2005, 4, 153–170. [Google Scholar] [CrossRef]
- Ding, Y.; Li, A. Structural health monitoring of long-span suspension bridges using wavelet packet analysis. Earthq. Eng. Eng. Vib. 2007, 6, 289–294. [Google Scholar] [CrossRef]
- Ren, W.-X.; Sun, Z.-S.; Xia, Y.; Hao, H.; Deeks, A.J. Damage Identification of Shear Connectors with Wavelet Packet Energy: Laboratory Test Study. J. Struct. Eng. 2008, 134, 832–841. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication: I and II. Bell Syst. Tech. J. 1948, 27, 379–443. [Google Scholar] [CrossRef]
- Powell, G.E.; Percival, I.C. A Spectral entropy method for distinguishing regular and irregular motion of hamiltonian systems. J. Phys. A Math. Gen. 1979, 12, 2053–2071. [Google Scholar] [CrossRef]
- Rosso, O.A.; Blanco, S.; Yordanova, J.; Kolev, V.; Figliola, A.; Schürmann, M.; Başar, E. Wavelet entropy: A new tool for analysis of short duration brain electrical signals. J. Neurosci. Methods 2001, 105, 65–75. [Google Scholar] [CrossRef]
- Ren, W.-X.; Sun, Z.-S. Structural Damage identification by using wavelet entropy. Eng. Struct. 2008, 30, 2840–2849. [Google Scholar] [CrossRef]
- Mikami, S.; Beskhyroun, S.; Oshima, T. Wavelet packet-based damage detection in beam-like structures without baseline modal parameters. Struct. Infrastruct. Eng. 2011, 7, 211–227. [Google Scholar] [CrossRef]
- Lee, S.G.; Yun, G.J. Real-time Health Monitoring of Bridge Structures Using a Reference-free Damage Detection Algorithm. Sens. Smart Struct. Technol. Civ. Mech. Aerosp. Syst. 2011, 7981, 8. [Google Scholar] [CrossRef]
- Hald, A. On the History of Maximum Likelihood in Relation to Inverse Probability and Least Squares. Stat. Sci. 1999, 14, 214–222. [Google Scholar] [CrossRef]
- Lee, S.G. Hybrid Damage Identification Based on Wavelet Transform and Finite Element Model Updating. Ph.D. Thesis, University of Akron, Akron, OH, USA, May 2012. [Google Scholar]
- Lee, S.G.; Yun, G.J.; Shang, S. Reference-free damage detection for truss bridge structures by continuous relative wavelet entropy method. Struct. Health Monit. 2014, 13, 307–320. [Google Scholar] [CrossRef]
- Ravanfar, S.A.; Razak, H.A.; Ismail, Z.; Hakim, S.J. A Hybrid Wavelet-Based Approach and Genetic Algorithm to Detect Damage in Beam-Like Structures without Baseline Data. Exp. Mech. 2016, 56, 1411–1426. [Google Scholar] [CrossRef]
- Ravanfar, S.A. Vibration-Based Structural Damage Detection and System Identification Using Wavelet Multiresolution Analysis. Ph.D. Thesis, University of Malaya, Kuala Lumpur, Malaysia, 2017. [Google Scholar]
- Moravvej, M.; El-Badry, M.; Joulani, P. Smart Structural Health Monitoring System for Damage Identification in Bridges Using Relative Wavelet Entropy. In Proceedings of the ICSIC 2016 International Conference on Smart Infrastructure and Construction, Cambridge, UK, 27–29 June 2016; Mair, R.J., Soga, K., Jin, Y., Parlikad, A.K., Schooling, J.M., Eds.; ICE Publishing: London, UK, 2016; pp. 411–416, paper no. 411. [Google Scholar]
- Moravvej, M.; El-Badry, M.; Joulani, P. Wavelet Entropy-Based Damage Identification Technique for Hybrid FRP-Concrete Structures. In Proceedings of the 5th International Structural Specialty Conference, ISSC-V, of the Canadian Society for Civil Engineering, CSCE, London, ON, Canada, 1–4 June 2016; p. 10. [Google Scholar]
- Moravvej, M.; El-Badry, M.; Joulani, P. Reference-free Damage Identification in Bridges Using Relative Wavelet Entropy. Can. Civ. Eng. Mag. 2017, 34, 18–21. [Google Scholar]
- Moravvej, M.; El-Badry, M. Damage Identification in a Beam-Type Structure under Varying Operational and Environmental Conditions. In Proceedings of the 10th International Conference on Short and Medium Span Bridges, SMSB-X, Quebec City, QC, Canada, 31 July–3 August 2018; p. 10. [Google Scholar]
- Moravvej, M.; El-Badry, M.; Hosseini, S.M. Damage Identification in Shear-Stud-Reinforced Slab-to-Precast Girder Connection Using a Relative Wavelet-Entropy Technique. In Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021, CSCE 2021, Virtual, 26–29 May 2021; Lecture Notes in Civil Engineering. Springer: Singapore, 2023; Volume 241, pp. 43–55. [Google Scholar] [CrossRef]
- Moravvej, M.; El-Badry, M. Identification of Structural Damage in Hybrid Bridge Truss Girders Using Relative Wavelet Entropy. In Proceedings of the 4th Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, Zurich, Switzerland, 13–15 September 2017; p. 8. [Google Scholar]
- Moravvej, M.; El-Badry, M. Fatigue Damage Identification in Hybrid Truss Girders Using Relative Wavelet Entropy. In Proceedings of the 39th Symposium of the International Association for Bridge and Structural Engineering, Vancouver, BC, Canada, 21–23 September 2017; pp. 3283–3290. [Google Scholar]
- Moravvej, M.; El-Badry, M. Structural Damage Identification in FRP-Reinforced Bridge Truss Girders Using a Reference-Free Vibration-Based Technique; American Concrete Institute (ACI) Special Publication on Fiber-Reinforced Polymer Reinforcement for Concrete Structures; American Concrete Institute (ACI): Farmington Hills, MI, USA, 2018; Volume SP-327(51), pp. 51.1–51.20. [Google Scholar]
- Kordestani, H.; Zhang, C. Direct Use of the Savitzky–Golay Filter to Develop an Output-Only Trend Line-Based Damage Detection Method. Sensors 2020, 20, 1983. [Google Scholar] [CrossRef]
- Chen, D.M.; Xu, Y.F.; Zhu, W.D. Experimental Investigation of Notch-Type Damage Identification with a Curvature-Based Method by Using a Continuously Scanning Laser Doppler Vibrometer System. J. Nondestruct. Eval. 2017, 36, 38. [Google Scholar] [CrossRef]
- Xu, Y.F.; Chen, D.M.; Zhu, W.D. Damage identification of beam structures using free response shapes obtained by use of a continuously scanning laser doppler vibrometer system. Mech. Syst. Signal Process. 2017, 92, 226–247. [Google Scholar] [CrossRef]
- Xu, Y.F.; Chen, D.M.; Zhu, W.D. Operational modal analysis using lifted continuously scanning laser doppler vibrometer measurements and its application to baseline-free structural damage identification. J. Vib. Control 2019, 25, 1341–1364. [Google Scholar] [CrossRef]
- Yang, Y.; Dorn, C.; Mancini, T.; Talken, Z.; Theiler, J.; Kenyon, G.; Farrar, C.; Mascarenas, D. Reference-free detection of minute, non-visible, damage using full-field, high-resolution mode shapes output-only identified from digital videos of structures. Struct. Health Monit. 2018, 17, 514–531. [Google Scholar] [CrossRef]
- Surace, C. Damage Assessment of Structures Using Only Post-Damage Vibration Measurements. Key Eng. Mater. 2013, 569, 11–22. [Google Scholar] [CrossRef]
- Voggu, S.; Sasmal, S. Dynamic nonlinearities for identification of the breathing crack type damage in reinforced concrete bridges. Struct. Health Monit. 2020, 20, 339–359. [Google Scholar] [CrossRef]
- Zhong, S.; Oyadiji, S.O. Crack detection in simply supported beams without baseline modal parameters by stationary wavelet transform. Mech. Syst. Signal Process. 2007, 21, 1853–1884. [Google Scholar] [CrossRef]
- Zhong, S.; Oyadiji, S.O. Detection of cracks in simply supported beams by continuous wavelet transform of reconstructed modal data. Comput. Struct. 2011, 89, 127–148. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, L.; Su, J.-L. Guyader. Identification of structural damage based on locally perturbed dynamic equilibrium with an application to beam component. J. Sound Vib. 2011, 330, 5963–5981. [Google Scholar] [CrossRef]
- Xu, H.; Su, Z.; Cao, M.S. Dynamic perturbation characteristics for non-baseline structural damage diagnosis. J. Vibroeng. 2015, 17, 1796–1804. [Google Scholar]
- Mao, Q. Vibration Analysis of Cracked Beams Using Adomian Decomposition Method and Non-Baseline Damage Detection via High-Pass Filters. Int. J. Acoust. Vib. 2016, 21, 170–177. [Google Scholar] [CrossRef]
- Wang, Q.; Deng, X. Damage detection with spatial wavelets. Int. J. Solids Struct. 1999, 36, 3443–3468. [Google Scholar] [CrossRef]
- Ratcliffe, C.P. A Frequency and Curvature Based Experimental Method for Locating Damage in Structures. J. Vib. Acoust. 2000, 122, 324–329. [Google Scholar] [CrossRef]
- Ratcliffe, C.P. Damage Detection Using a Modified Laplacian Operator on Mode Shape Data. J. Sound Vib. 1997, 204, 505–517. [Google Scholar] [CrossRef]
- Ratcliffe, C.P.; Bagaria, W.J. Vibration Technique for Locating Delamination in a Composite Beam. AIAA J. 1998, 36, 1074–1077. [Google Scholar] [CrossRef]
- Randhawa, J.; Bhalla, S. A baseline free approach for multiple damage detection in beams. Sens. Smart Struct. Technol. Civ. Mech. Aerosp. Syst. 2019, 10970, 135–146. [Google Scholar] [CrossRef]
- Yang, X.; Ouyang, H.; Guo, X.; Cao, S. Modal Strain Energy-Based Model Updating Method for Damage Identification on Beam-Like Structures. J. Struct. Eng. 2020, 146, 1–13. [Google Scholar] [CrossRef]
- Yoon, M.K.; Heider, D.; Gillespie Jr, J.W.; Ratcliffe, C.P.; Crane, R.M. Local damage detection using the two-dimensional gapped smoothing method. J. Sound Vib. 2005, 279, 119–139. [Google Scholar] [CrossRef]
- Gao, H.; Guo, X.; Zhao, Y. Experimental Study of Multi-damage Detection in a Plate Based on Non-modal Method. Exp. Tech. 2014, 38, 6–15. [Google Scholar] [CrossRef]
- Gao, H.Y.; Guo, X.L.; Ouyang, H.; Yang, X.M. Multi-damage localization in plate structure using frequency response function-based indices. J. Phys. Conf. Ser. 2015, 628, 012004. [Google Scholar] [CrossRef]
- Jiao, Y.B.; Liu, H.B.; Cheng, Y.C.; Gong, Y.F. Damage Identification of Bridge Based on Chebyshev Polynomial Fitting and Fuzzy Logic without Considering Baseline Model Parameters. Shock Vib. 2015, 2015, 187956. [Google Scholar] [CrossRef]
- Meruane, V.; Fernandez, I.; Ruiz, R.O.; Petrone, G.; Lopez-Droguett, E. Gapped Gaussian smoothing technique for debonding assessment with automatic thresholding. Struct. Control Health Monit. 2019, 26, e2371. [Google Scholar] [CrossRef]
- Yoon, M.K.; Heider, D.; Gillespie, J.W.; Ratcliffe, C.P.; Crane, R.M. Local Damage Detection with the Global Fitting Method Using Mode Shape Data in Notched Beams. J. Nondestruct. Eval. 2009, 28, 63–74. [Google Scholar] [CrossRef]
- He, J.; Zhou, Y. A novel mode shape reconstruction method for damage diagnosis of cracked beam. Mech. Syst. Signal Process. 2019, 122, 433–447. [Google Scholar] [CrossRef]
- Yoon, M.K.; Heider, D.; Gillespie, J.W.; Ratcliffe, C.P.; Crane, R.M. Local Damage Detection with the Global Fitting Method Using Operating Deflection Shape Data. J. Nondestruct. Eval. 2010, 29, 25–37. [Google Scholar] [CrossRef]
- Sampaio, R.P.; Maia, N.M.; Silva, J.M. Damage Detection Using the Frequency Response Function Curvature Method. J. Sound Vib. 1999, 226, 1029–1042. [Google Scholar] [CrossRef]
- Liu, X.; Lieven, N.A.; Escamilla-Ambrosio, P.J. Frequency response function shape-based methods for structural damage localisation. Mech. Syst. Signal Process. 2009, 23, 1243–1259. [Google Scholar] [CrossRef]
- Ratcliffe, C.P.; Crane, R.M.; Gillespie, J.W. Damage detection in large composite structures using a broadband vibration method. Insight-Non-Destr. Test. Cond. Monit. 2004, 46, 10–16. [Google Scholar] [CrossRef]
- Cao, S.; Ouyang, H. Robust multi-damage localisation using common eigenvector analysis and covariance matrix changes. Mech. Syst. Signal Process. 2018, 111, 663–677. [Google Scholar] [CrossRef]
- Zhang, Y.; Lie, S.T.; Xiang, Z. Damage detection method based on operating deflection shape curvature extracted from dynamic response of a passing vehicle. Mech. Syst. Signal Process. 2013, 35, 238–254. [Google Scholar] [CrossRef]
- Kim, J.B.; Lee, E.T.; Rahmatalla, S.; Eun, H.C. Non-baseline Damage Detection Based on the Deviation of Displacement Mode Shape Data. J. Nondestruct. Eval. 2013, 32, 14–24. [Google Scholar] [CrossRef]
- Lee, E.T.; Rahmatalla, S.; Eun, H.C. Damage detection by mixed measurements using accelerometers and strain gages. Smart Mater. Struct. 2013, 22, 075014. [Google Scholar] [CrossRef]
- Lee, E.T.; Eun, H.C. Damage identification through the comparison with pseudo-baseline data at damaged state. Eng. Comput. 2016, 32, 247–254. [Google Scholar] [CrossRef]
- He, S. Inverse Solution Methods for In-Situ Characterisation of Damage in Composite Structures. Ph.D. Thesis, RMIT University, Melbourne, Australia, December 2014. [Google Scholar]
- He, S.; Rose, L.R.; Wang, C.H. A numerical study to quantify delamination damage of composite structures using an inverse method. Aust. J. Multi-Discip. Eng. 2013, 10, 145–153. [Google Scholar] [CrossRef]
- He, S.; Rose, L.F.; Wang, C.H. Inverse methods for quantitative assessment of delamination damage based on vibrational response. Struct. Health Monit. 2015, 14, 411–425. [Google Scholar] [CrossRef]
- Kim, H.; Melhem, H. Damage detection of structures by wavelet analysis. Eng. Struct. 2004, 26, 347–362. [Google Scholar] [CrossRef]
- Alvandi, A.; Bastien, J.; Gregoire, E.; Jolin, M. Bridge Integrity Assessment by Continuous Wavelet Transforms. Int. J. Struct. Stab. Dyn. 2009, 9, 11–43. [Google Scholar] [CrossRef]
- Katunin, A. Modal-Based Non-Destructive Damage Assessment in Composite Structures Using Wavelet Analysis: A Review. Int. J. Compos. Mater. 2013, 3, 1–9. [Google Scholar] [CrossRef]
- Katunin, A. Nondestructive Damage Assessment of Composite Structures Based on Wavelet Analysis of Modal Curvatures: State-of-the-Art Review and Description of Wavelet-Based Damage Assessment Benchmark. Shock Vib. 2015, 2015, 735219. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Z. Damage detection based on vibration for composite sandwich panels with truss core. J. Compos. Struct. 2019, 229, 111376. [Google Scholar] [CrossRef]
- Lynch, J.; Loh, K. A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. Shock Vib. Dig. 2006, 38, 91–128. [Google Scholar] [CrossRef]
- Zhu, D.; Guo, J.; Cho, C.; Wang, Y.; Lee, K. Wireless Mobile Sensor Network for the System Identification of a Space Frame Bridge. IEEE/ASME Trans. Mechatron. 2012, 17, 499–507. [Google Scholar] [CrossRef]
- Marulanda, J.; Caicedo, J.; Thomson, P. Modal Identification Using Mobile Sensors under Ambient Excitation. J. Comput. Civ. Eng. 2017, 31, 04016051. [Google Scholar] [CrossRef]
- Nayek, R.; Mukhopadhyay, S.; Narasimhan, S. Mass Normalized Mode Shape Identification of Bridge Structures Using a Single Actuator-Sensor Pair. Struct. Control Health Monit. 2018, 25, e2244. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, Q.; Cao, M.; Su, Z.; Wu, Z. A Dynamic Equilibrium–Based Damage Identification Method Free of Structural Baseline Parameters: Experimental Validation in a Two-Dimensional Plane Structure. J. Aerosp. Eng. 2018, 31, 04018081. [Google Scholar] [CrossRef]
- Cao, M.; Su, Z.; Xu, H.; Radzieński, M.; Xu, W.; Ostachowicz, W. A novel damage characterization approach for laminated composites in the absence of material and structural information. Mech. Syst. Signal Process. 2020, 143, 106831. [Google Scholar] [CrossRef]
- Jung, D.; Kim, C. Finite element model updating on small-scale bridge model using the hybrid genetic algorithm. Struct. Infrastruct. Eng. 2013, 9, 481–495. [Google Scholar] [CrossRef]
- Tran-Ngoc, H.; Khatir, S.; De Roeck, G.; Bui-Tien, T.; Nguyen-Ngoc, L.; Abdel Wahab, M. Model updating for Nam O bridge using particle swarm optimization algorithm and genetic algorithm. Sensors 2018, 18, 4131. [Google Scholar] [CrossRef]
- Yuen, K.-V.; Katafygiotis, L.S. Bayesian Modal Updating Using Complete Input and Incomplete Response Noisy Measurements. J. Eng. Mech. 2002, 128, 340–350. [Google Scholar] [CrossRef]
- Titurus, B.; Friswell, M.I.; Starek, L. Damage detection using generic elements: Part I. Model updating. Comput. Struct. 2003, 81, 2273–2286. [Google Scholar] [CrossRef]
- Ding, Y.; Li, A. Finite Element Model Updating for the Runyang Cable-Stayed Bridge Tower Using Ambient Vibration Test Results. Adv. Struct. Eng. 2008, 11, 323–335. [Google Scholar] [CrossRef]
- Vinogradova, I. Multi-Attribute Decision-Making Methods as a Part of Mathematical Optimization. Mathematics 2019, 7, 915. [Google Scholar] [CrossRef]
- Abdullah, L.; Adawiyah, C. Simple Additive Weighting Methods of Multi Criteria Decision Making and Applications: A Decade Review. Int. J. Inf. Process. Manag. 2014, 5, 39–49. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Coello, C.A.; Van Veldhuizen, D.A.; Lamont, G.B. Evolutionary Algorithms for Solving Multi-Objective Problems; Kluwer Academic Publishers: New York, NY, USA, 2002. [Google Scholar]
- Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- McCall, J. Genetic algorithms for modelling and optimisation. J. Comput. Appl. Math. 2005, 184, 205–222. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, 27 November–2 December 1995; pp. 1942–1948. [Google Scholar]
- Perera, R.; Fang, S.E.; Ruiz, A. Application of particle swarm optimization and genetic algorithms to multi objective damage identification inverse problems with modelling errors. Mech. Syst. Signal Process. 2010, 45, 723–734. [Google Scholar]
Process | Brief Description | Challenges and Shortcomings |
---|---|---|
Access | Process of obtaining data from intact state of structures |
|
Interpretation | Process of identifying damage through detecting changes in obtained data |
|
Domain | Damage Identification Strategy | Merits and Shortcomings |
---|---|---|
Time |
|
|
Space |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moravvej, M.; El-Badry, M. Reference-Free Vibration-Based Damage Identification Techniques for Bridge Structural Health Monitoring—A Critical Review and Perspective. Sensors 2024, 24, 876. https://doi.org/10.3390/s24030876
Moravvej M, El-Badry M. Reference-Free Vibration-Based Damage Identification Techniques for Bridge Structural Health Monitoring—A Critical Review and Perspective. Sensors. 2024; 24(3):876. https://doi.org/10.3390/s24030876
Chicago/Turabian StyleMoravvej, Mohammad, and Mamdouh El-Badry. 2024. "Reference-Free Vibration-Based Damage Identification Techniques for Bridge Structural Health Monitoring—A Critical Review and Perspective" Sensors 24, no. 3: 876. https://doi.org/10.3390/s24030876
APA StyleMoravvej, M., & El-Badry, M. (2024). Reference-Free Vibration-Based Damage Identification Techniques for Bridge Structural Health Monitoring—A Critical Review and Perspective. Sensors, 24(3), 876. https://doi.org/10.3390/s24030876