Gas Turbine Anomaly Detection under Time-Varying Operation Conditions Based on Spectra Alignment and Self-Adaptive Normalization
Abstract
:1. Introduction
- To address the issue of poor performance when using frequency spectra to train neural networks, a spectra alignment method is proposed. This method aligns the corresponding frequency components related to the rotational frequency of the spectrum to the same positions, making it compatible with neural networks.
- A self-adaptive global normalization method suitable for vibration spectra is proposed, which enhances features of weak components while preserving the distinctions of the importance of frequency components with different amplitudes. This approach enables neural networks to better learn information from the spectra.
- An entire abnormal detection framework for gas turbines was established with a more suitable anomaly index for time-varying operating conditions. And the effectiveness of the proposed methods was validated using a real gas turbine dataset.
2. Proposed Method
2.1. Spectra Alignment
2.2. Self-Adaptive Global Normalization
- Feature normalization: Each corresponding data point across various spectra is normalized using the same parameters. This means that the normalization is performed independently for each position across all spectra.
- Instance normalization: Each spectrum is normalized using the same parameters. This normalization is applied separately to each spectrum, regardless of the position of the data points.
- Global normalization: All the data points in all the spectra are normalized using the same parameters. The normalization is performed collectively on all the spectra, treating them as a single set of data.
- Sort the data in ascending order.
- Compute the difference between two adjacent data points.
- Compute the average of these differences and multiply it by 10 to obtain the threshold value.
- Identify all data points whose difference values exceed the threshold. These points are considered as potential splitting points.
- Find , which is the first splitting point that is less than or equal to .
- Find , which is the left neighbor of the first splitting point that is greater than or equal to .
Algorithm 1 Find Normalization Parameters and |
Require: data (array of numeric values), t1 (numeric value), t2 (numeric value) Ensure: k1, k2 (numeric values)
|
2.3. Anomaly Detection Process
3. Experimental Results and Analysis
3.1. Dataset Description
3.2. Validation and Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fentaye, A.D.; Baheta, A.T.; Gilani, S.I.; Kyprianidis, K.G. A Review on Gas Turbine Gas-Path Diagnostics: State-of-the-Art Methods, Challenges and Opportunities. Aerospace 2019, 6, 83. [Google Scholar] [CrossRef]
- Miao, D.; Liu, B.; Li, Z.; Li, G.; Zhang, P.; Feng, K. A Clustering Fault Diagnosis Method for Gas Turbine Performance Parameters Based on t-SNE. In Proceedings of the 2022 Global Reliability and Prognostics and Health Management (PHM-Yantai), Yantai, China, 13–16 October 2022. [Google Scholar] [CrossRef]
- Wu, S.; Russhard, P.; Yan, R.; Tian, S.; Wang, S.; Zhao, Z.; Chen, X. An adaptive online blade health monitoring method: From raw data to parameters identification. IEEE Trans. Instrum. Meas. 2020, 69, 2581–2592. [Google Scholar] [CrossRef]
- Feng, K.; Xiao, Y.; Li, Z.; Jiang, Z.; Gu, F. Gas Turbine Blade Fracturing Fault Diagnosis Based on Broadband Casing Vibration. Measurement 2023, 214, 112718. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, C.; Yang, T.; Chen, G. An Intelligent Anomaly Detection Method for Rotating Machinery Based on Vibration Vectors. IEEE Sens. J. 2022, 22, 14294–14305. [Google Scholar] [CrossRef]
- Egaji, O.A.; Ekwevugbe, T.; Griffiths, M. A Data Mining based Approach for Electric Motor Anomaly Detection Applied on Vibration Data. In Proceedings of the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July 2020. [Google Scholar] [CrossRef]
- Wang, H.; Li, Q.; Liu, Y.; Yang, S. Anomaly Data Detection of Rolling Element Bearings Vibration Signal Based on Parameter Optimization Isolation Forest. Machines 2022, 10, 459. [Google Scholar] [CrossRef]
- Yan, W.; Goebel, K.F. Sensor validation and fusion for gas turbine vibration monitoring. Syst. Diag. Prog. Secur. Cond. Monit. III 2003, 5107, 106–117. [Google Scholar] [CrossRef]
- Cao, J.; Dai, H.; Lei, B.; Yin, C.; Zeng, H.; Kummert, A. Maximum correntropy criterion-based hierarchical one-class classification. IEEE Trans. Neural Netw. Learn Syst. 2020, 32, 3748–3754. [Google Scholar] [CrossRef]
- Xu, H.; Song, P.; Liu, B. A vibration signal anomaly detection method based on frequency component clustering and isolated forest algorithm. In Proceedings of the 2019 IEEE 2nd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Shenyang, China, 22–24 November 2019. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Wang, Q.; Xing, Z.; Zeng, F. Rotating machinery anomaly detection using data reconstruction generative adversarial networks with vibration energy analysis. AIP Adv. 2022, 12, 035221. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, X.; Lu, L.; Zhao, Z. Multiscale dynamic fusion global sparse network for gearbox fault diagnosis. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Kwon, D.; Natarajan, K.; Suh, S.C.; Kim, H.; Kim, J. An Empirical Study on Network Anomaly Detection Using Convolutional Neural Networks. In Proceedings of the 2018 IEEE 38th International Conference on Distributed Computing Systems, Vienna, Austria, 2–6 July 2018. [Google Scholar] [CrossRef]
- Wen, G.; Zhou, H.; Su, Y.; Chen, X. Anomaly Detection Based on Conditional Variational Autoencoder for Bearing Operating Under Time Varying Conditions. J. Vib. Meas. Diag. 2023, 43, 1–8. [Google Scholar] [CrossRef]
- Sun, J.; Yan, C.; Wen, J. Intelligent Bearing Fault Diagnosis Method Combining Compressed Data Acquisition and Deep Learning. IEEE Trans. Instrum. Meas. 2018, 67, 185–195. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, R.; Si, Y.; Wang, L. An Improved Convolutional Neural Network for Three-Phase Inverter Fault Diagnosis. IEEE Trans. Instrum. Meas. 2022, 71, 1–15. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Y.; Yang, L.; Zhao, Z.; Chen, X. Unsupervised Machine Anomaly Detection Using Autoencoder and Temporal Convolutional Network. IEEE Trans. Instrum. Meas. 2022, 71, 1–13. [Google Scholar] [CrossRef]
- Gao, H.; Qiu, B.; Barroso, R.J.D.; Hussain, W.; Xu, Y.; Wang, X. TSMAE: A Novel Anomaly Detection Approach for Internet of Things Time Series Data Using Memory-Augmented Autoencoder. IEEE Trans. Netw. Sci. Eng. 2023, 10, 2978–2990. [Google Scholar] [CrossRef]
- Ibrahim, R.; Zemouri, R.; Tahan, A.; Lafleur, F.; Kedjar, B.; Merkhouf, A.; Al-Haddad, K. Anomaly Detection for Large Hydrogenerators Using the Variational Autoencoder Based on Vibration Signals. In Proceedings of the 2022 International Conference on Electrical Machines (ICEM), Valencia, Spain, 5–8 September 2022. [Google Scholar] [CrossRef]
- Hoffmann, J.L.C.; Horstmann, L.P.; Lucena, M.M.; Araujo, G.M.; Frohlich, A.A.; Nishioka, M.H.N. Anomaly Detection on Wind Turbines Based on a Deep Learning Analysis of Vibration Signals. Appl. Artif. Intell. 2022, 35, 893–913. [Google Scholar] [CrossRef]
- Matsui, A.; Asahi, S.; Tamura, S.; Hayamizu, S.; Isashi, R.; Furukawa, A.; Naitou, T. Anomaly Detection in Mechanical Vibration Using Combination of Signal Processing and Autoencoder. J. Signal Process. 2020, 24, 203–206. [Google Scholar] [CrossRef]
- Liu, S.; Ji, Z.; Wang, Y.; Zhang, Z.; Xu, Z.; Kan, C.; Jin, K. Multi-feature fusion for fault diagnosis of rotating machinery based on convolutional neural network. Comput. Commun. 2021, 173, 160–169. [Google Scholar] [CrossRef]
- Chen, Z.; Li, W. Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network. IEEE Trans. Instrum. Meas. 2017, 66, 1693–1702. [Google Scholar] [CrossRef]
- Su, H.; Chong, K.T. Induction Machine Condition Monitoring Using Neural Network Modeling. IEEE Trans. Ind. Electron. 2007, 54, 241–249. [Google Scholar] [CrossRef]
- Kim, S.; Park, H.J.; Seo, Y.H.; Choi, J.H. A Robust Health Indicator for Rotating Machinery Under Time-Varying Operating Conditions. IEEE Access 2022, 10, 4993–5001. [Google Scholar] [CrossRef]
- Schmidt, S.; Zimroz, R.; Heyns, P.S. Enhancing gearbox vibration signals under time-varying operating conditions by combining a whitening procedure and a synchronous processing method. Mech. Syst. Signal Process. 2021, 156, 107668. [Google Scholar] [CrossRef]
- Schmidt, S.; Gryllias, K.C. The anomalous and smoothed anomalous envelope spectra for rotating machine fault diagnosis. Mech. Syst. Signal Process. 2021, 158, 107770. [Google Scholar] [CrossRef]
- Schmidt, S.; Heyns, P.S. Normalisation of the amplitude modulation caused by time-varying operating conditions for condition monitoring. Measurement 2020, 149, 106964. [Google Scholar] [CrossRef]
- Chang, S.; Cheng, M.; Xu, Y.; Cheng, L. Study on Foreign Object Damage Regular Pattern of Aero Engine Compressor Blades. J. Mech. Eng. 2019, 55, 87–94. [Google Scholar] [CrossRef]
- Zhao, X.; Yao, J.; Deng, W.; Ding, P.; Ding, Y.; Jia, M.; Liu, Z. Intelligent Fault Diagnosis of Gearbox Under Variable Working Conditions With Adaptive Intraclass and Interclass Convolutional Neural Network. IEEE Trans. Neural Netw. Learn Syst. 2022, 34, 6339–6353. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.I.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 1–74. [Google Scholar] [CrossRef]
- Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.P.; Glorot, X.; Botvinick, M.M.; Mohamed, S.; Lerchner, A. beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. In Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 24–26 April 2017. [Google Scholar]
- Burgess, C.P.; Higgins, I.; Pal, A.; Matthey, L.; Watters, N.; Desjardins, G.; Lerchner, A. Understanding disentangling in β-VAE. arXiv 2018, arXiv:1804.03599. [Google Scholar]
- Yuan, C.; Yang, H. Research on K-Value Selection Method of K-Means Clustering Algorithm. J 2019, 2, 226–235. [Google Scholar] [CrossRef]
- Tambunan, H.B.; Barus, D.H.; Hartono, J.; Alam, A.S.; Nugraha, D.A.; Usman, H.H.H. Electrical Peak Load Clustering Analysis Using K-Means Algorithm and Silhouette Coefficient. In Proceedings of the 2020 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP), Bandung, Indonesia, 23–24 September 2020. [Google Scholar] [CrossRef]
Spectra Alignment | Normalization Method | MSE | Clustering MCAI | Manual MCAI |
---|---|---|---|---|
× | Instance | 0.624 | 0.629 | 0.627 |
Self-adaptive Instance | 0.526 | 0.536 | 0.549 | |
Feature | 0.629 | 0.668 | 0.675 | |
Self-adaptive Feature | 0.630 | 0.692 | 0.667 | |
Global | 0.521 | 0.504 | 0.516 | |
Self-adaptive Global | 0.614 | 0.652 | 0.639 | |
✓ | Instance | 0.738 | 0.773 | 0.769 |
Self-adaptive Instance | 0.719 | 0.807 | 0.810 | |
Feature | 0.824 | 0.886 | 0.887 | |
Self-adaptive Feature | 0.824 | 0.886 | 0.890 | |
Global | 0.618 | 0.726 | 0.743 | |
Self-adaptive Global | 0.782 | 0.898 | 0.903 |
Spectra Alignment | Fully Connected Layer | Convolutional Layer | |||||||
---|---|---|---|---|---|---|---|---|---|
VAE | β-VAE | AE | DBVAE | VAE | β-VAE | AE | DBVAE | ||
× | 0.633 | 0.632 | 0.603 | 0.652 | 0.633 | 0.649 | 0.665 | 0.684 | |
✓ | 0.835 | 0.872 | 0.887 | 0.898 | 0.832 | 0.868 | 0.882 | 0.879 |
Encoder | Decoder | ||||
---|---|---|---|---|---|
Layer | Kernel Size | Stride | Layer | Kernel Size | Stride |
Conv1D | 2 | Conv1DTranspose | 2 | ||
MaxPool1D | 2 | Conv1DTranspose | 2 | ||
Conv1D | 2 | UpSampling1D | \ | 2 | |
Conv1D | 2 | Conv1DTranspose | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, D.; Feng, K.; Xiao, Y.; Li, Z.; Gao, J. Gas Turbine Anomaly Detection under Time-Varying Operation Conditions Based on Spectra Alignment and Self-Adaptive Normalization. Sensors 2024, 24, 941. https://doi.org/10.3390/s24030941
Miao D, Feng K, Xiao Y, Li Z, Gao J. Gas Turbine Anomaly Detection under Time-Varying Operation Conditions Based on Spectra Alignment and Self-Adaptive Normalization. Sensors. 2024; 24(3):941. https://doi.org/10.3390/s24030941
Chicago/Turabian StyleMiao, Dongyan, Kun Feng, Yuan Xiao, Zhouzheng Li, and Jinji Gao. 2024. "Gas Turbine Anomaly Detection under Time-Varying Operation Conditions Based on Spectra Alignment and Self-Adaptive Normalization" Sensors 24, no. 3: 941. https://doi.org/10.3390/s24030941
APA StyleMiao, D., Feng, K., Xiao, Y., Li, Z., & Gao, J. (2024). Gas Turbine Anomaly Detection under Time-Varying Operation Conditions Based on Spectra Alignment and Self-Adaptive Normalization. Sensors, 24(3), 941. https://doi.org/10.3390/s24030941