Characterization of Particle Shape with an Improved 3D Light Scattering Sensor (3D-LSS) for Aerosols
Abstract
:1. Introduction
2. Methodology
2.1. Elastic Light Scattering
2.2. Sphericity and Roundness of Particles
2.3. Sphericity Index (SPX)
2.4. Sensor Development and Experimental Setup
2.4.1. Light Detector Design
2.4.2. Optimization of the Aerodynamic Focusing Nozzle by CFD Simulations
2.5. Signal Analysis
2.5.1. Sampling Rate
2.5.2. Residence Time Analysis
3. Materials and Methods
3.1. Generation of the Test Aerosols
3.1.1. PSL Aerosol
3.1.2. SiO2 and NaCl Aerosol
3.2. Characterization of the Test Aerosols by Scanning Electron Microscopy (SEM) Imaging
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, P.; Ramakrishnan, P. Powder Characterization by Particle Shape Assessment. KONA Powder Part. J. 1996, 14, 16–30. [Google Scholar] [CrossRef]
- Hintz, W.; Antonyuk, S.; Schubert, W.; Ebenau, B.; Haack, A.; Tomas, J. Determination of Physical Properties of Fine Particles, Nanoparticles and Particle Beds. In Modern Drying Technology; Tsotsas, E., Mujumdar, A., Eds.; Wiley: Hoboken, NJ, USA, 2008; pp. 279–362. [Google Scholar]
- Ulusoy, U. A Review of Particle Shape Effects on Material Properties for Various Engineering Applications: From Macro to Nanoscale. Minerals 2023, 13, 91. [Google Scholar] [CrossRef]
- Polarz, S. Shape Matters: Anisotropy of the Morphology of Inorganic Colloidal Particles-Synthesis and Function. Adv. Funct. Mater. 2011, 21, 3214–3230. [Google Scholar] [CrossRef]
- Champion, J.A.; Katare, Y.K.; Mitragotri, S. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release Off. J. Control. Release Soc. 2007, 121, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Kho, K.; Hadinoto, K. Dry powder inhaler delivery of amorphous drug nanoparticles: Effects of the lactose carrier particle shape and size. Powder Technol. 2013, 233, 303–311. [Google Scholar] [CrossRef]
- Donnet, J.-B.; Bansal, R.C.; Wang, M.-J. Carbon Black: Science and Technology, 2nd ed.; CRC Press LLC: Boca Raton, FL, USA, 1993. [Google Scholar]
- Sympatec GmbH. Dynamic Image Analysis in Process Environment for Dry Powders, Granules, Suspensions and Emulsion from 1 µm to 10,000 µm. Available online: https://www.sympatec.com/en/particle-measurement/sensors/dynamic-image-analysis/pictos/ (accessed on 1 January 2024).
- Wirz, D.; Hofmann, M.; Lorenz, H.; Bart, H.-J.; Seidel-Morgenstern, A.; Temmel, E. A Novel Shadowgraphic Inline Measurement Technique for Image-Based Crystal Size Distribution Analysis. Crystals 2020, 10, 740. [Google Scholar] [CrossRef]
- Mills, O.P.; Rose, W.I. Shape and surface area measurements using scanning electron microscope stereo-pair images of volcanic ash particles. Geosphere 2010, 6, 805–811. [Google Scholar] [CrossRef]
- Babick, F. Characterisation of Colloidal Suspensions. In Suspensions of Colloidal Particles and Aggregates; Springer: Cham, Switzerland, 2016; pp. 7–74. [Google Scholar]
- Bals, J.; Epple, M. Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy. RSC Adv. 2023, 13, 2795–2802. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Li, H.; He, J. Machine Learning for Subsurface Characterization; Elsevier Science & Technology: San Diego, CA, USA, 2020. [Google Scholar]
- Monchot, P.; Coquelin, L.; Guerroudj, K.; Feltin, N.; Delvallée, A.; Crouzier, L.; Fischer, N. Deep Learning Based Instance Segmentation of Titanium Dioxide Particles in the Form of Agglomerates in Scanning Electron Microscopy. Nanomaterials 2021, 11, 968. [Google Scholar] [CrossRef]
- Dick, W.D.; Ziemann, P.J.; Huang, P.-F.; Mcmurry, P.H. Optical shape fraction measurements of submicrometre laboratory and atmospheric aerosols. Meas. Sci. Technol. 1998, 9, 183–196. [Google Scholar] [CrossRef]
- Sachweh, B.A.; Dick, W.D.; Mcmurry, P.H. Distinguishing between Spherical and Nonspherical Particles by Measuring the Variability in Azimuthal Light Scattering. Aerosol Sci. Technol. 1995, 23, 373–391. [Google Scholar] [CrossRef]
- Pitz, M.; Hellmann, A.; Ripperger, S.; Antonyuk, S. Development of a 3D Light Scattering Sensor for Online Characterization of Aerosol Particles. Part. Part. Syst. Charact. 2018, 35, 1800045. [Google Scholar] [CrossRef]
- Wriedt, T. A Review of Elastic Light Scattering Theories. Part. Part. Syst. Charact. 1998, 15, 67–74. [Google Scholar] [CrossRef]
- Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. Chem. 1908, 330, 377–445. [Google Scholar] [CrossRef]
- van De Hulst, H.C. Light Scattering by Small Particles; Dover Books on Physics; Dover Publications Inc., LSC Communications: Mineola, NY, USA, 2018. [Google Scholar]
- Purcell, E.M.; Pennypacker, C.R. Scattering and Absorption of Light by Nonspherical Dielectric Grains. Astrophys. J. 1973, 186, 705. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles, 1st ed.; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Mishchenko, M.I.; Travis, L.D.; Lacis, A. Scattering, Absorption, and Emission of Light by Small Particles; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Gallinet, B.; Butet, J.; Martin, O.J.F. Numerical methods for nanophotonics: Standard problems and future challenges. Laser Photonics Rev. 2015, 9, 577–603. [Google Scholar] [CrossRef]
- Cruz-Matías, I.; Ayala, D.; Hiller, D.; Gutsch, S.; Zacharias, M.; Estradé, S.; Peiró, F. Sphericity and roundness computation for particles using the extreme vertices model. J. Comput. Sci. 2019, 30, 28–40. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. Particle shape: A review and new methods of characterization and classification. Sedimentology 2008, 55, 31–63. [Google Scholar] [CrossRef]
- Rodriguez, J.M.; Edeskär, T.; Knutsson, S. Particle Shape Quantities and Measurement Techniques–A Review. Electron. J. Geotech. Eng. 2013, 18/A, 169–198. [Google Scholar]
- Krumbein, W.C. Measurement and Geological Significance of Shape and Roundness of Sedimentary Particles. SEPM J. Sediment. Res. 1941, 11, 64–72. [Google Scholar] [CrossRef]
- Gresina, F.; Farkas, B.; Fábián, S.Á.; Szalai, Z.; Varga, G. Morphological analysis of mineral grains from different sedimentary environments using automated static image analysis. Sediment. Geol. 2023, 455, 106479. [Google Scholar] [CrossRef]
- Szmańda, J.B.; Witkowski, K. Morphometric Parameters of Krumbein Grain Shape Charts—A Critical Approach in Light of the Automatic Grain Shape Image Analysis. Minerals 2021, 11, 937. [Google Scholar] [CrossRef]
- Wadell, H. Sphericity and Roundness of Rock Particles. J. Geol. 1933, 41, 310–331. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, J.; Zhao, B. Micromorphology characterization and reconstruction of sand particles using micro X-ray tomography and spherical harmonics. Eng. Geol. 2015, 184, 126–137. [Google Scholar] [CrossRef]
- Lin, C.L.; Miller, J.D. 3D characterization and analysis of particle shape using X-ray microtomography (XMT). Powder Technol. 2005, 154, 61–69. [Google Scholar] [CrossRef]
- Roth, C.; Gebhart, J.; Heigwer, G. Spectrometry of submicron-aerosols by counting single particles illuminated by laser light. J. Colloid Interface Sci. 1976, 54, 265–277. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Gosman, A.D.; Loannides, E. Aspects of Computer Simulation of Liquid-Fueled Combustors. J. Energy 1983, 7, 482–490. [Google Scholar] [CrossRef]
- Misiulia, D.; Andersson, A.G.; Lundström, T.S. Effects of the inlet angle on the collection efficiency of a cyclone with helical-roof inlet. Powder Technol. 2017, 305, 48–55. [Google Scholar] [CrossRef]
- Nyquist, H. Certain Topics in Telegraph Transmission Theory. Trans. Am. Inst. Electr. Eng. 1928, 47, 617–644. [Google Scholar] [CrossRef]
- Shannon, C.E. Communication in the Presence of Noise. Proc. IRE 1949, 37, 10–21. [Google Scholar] [CrossRef]
- Das, S.; Mohanty, N.; Singh, A. Is the Nyquist Rate Enough? In Proceedings of the 2008 the Third International Conference on Digital Telecommunications (ICDT 2008), Bucharest, Romania, 29 June–5 July 2008. [Google Scholar]
- Kerner, M.; Schmidt, K.; Schumacher, S.; Puderbach, V.; Asbach, C.; Antonyuk, S. Evaluation of electrostatic properties of electret filters for aerosol deposition. Sep. Purif. Technol. 2020, 239, 116548. [Google Scholar] [CrossRef]
- Gensdarmes, F. Methods of Detection and Characterization. In Nanoengineering; Elsevier: Amsterdam, The Netherlands, 2015; pp. 55–84. [Google Scholar]
Material | Purity | Supplier | Size |
---|---|---|---|
NaCl | ≥99.5% | Carl Roth GmbH, Karlsruhe, Germany | n.a. |
SiO2 | n.a. | microParticles GmbH, Berlin, Germany | 119 ± 4 nm |
PSL | n.a. | Palas GmbH, Karlsruhe, Germany | 1100 nm (narrow distribution) |
DI-water | <0.1 µS/cm | RO system + mixed bed desalination | n.a. |
Silica gel | n.a. | Carl Roth GmbH, Karlsruhe, Germany | 2.5–6 mm |
Test Aerosol | Mobility Diameter dm Setpoint in nm |
---|---|
NaCl | 700 |
SiO2 | 900 |
PSL | 1100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weirich, M.; Misiulia, D.; Antonyuk, S. Characterization of Particle Shape with an Improved 3D Light Scattering Sensor (3D-LSS) for Aerosols. Sensors 2024, 24, 955. https://doi.org/10.3390/s24030955
Weirich M, Misiulia D, Antonyuk S. Characterization of Particle Shape with an Improved 3D Light Scattering Sensor (3D-LSS) for Aerosols. Sensors. 2024; 24(3):955. https://doi.org/10.3390/s24030955
Chicago/Turabian StyleWeirich, Marc, Dzmitry Misiulia, and Sergiy Antonyuk. 2024. "Characterization of Particle Shape with an Improved 3D Light Scattering Sensor (3D-LSS) for Aerosols" Sensors 24, no. 3: 955. https://doi.org/10.3390/s24030955
APA StyleWeirich, M., Misiulia, D., & Antonyuk, S. (2024). Characterization of Particle Shape with an Improved 3D Light Scattering Sensor (3D-LSS) for Aerosols. Sensors, 24(3), 955. https://doi.org/10.3390/s24030955