Cryologger Ice Tracking Beacon: A Low-Cost, Open-Source Platform for Tracking Icebergs and Ice Islands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.1.1. Hardware
2.1.2. Software
2.1.3. Data Transmission and Processing
2.2. Deployments
3. Results and Discussion
3.1. Iceberg Drift
3.1.1. 2018 Deployments
3.1.2. 2019 Deployments
3.2. Operation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuglem, M.; Jordaan, I. Risk Analysis and Hazards of Ice Islands. In Arctic Ice Shelves and Ice Islands; Copland, L., Mueller, D., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2017; pp. 395–415. [Google Scholar] [CrossRef]
- Dawson, J.; Pizzolato, L.; Howell, S.E.L.; Copland, L.; Johnston, M.E. Temporal and Spatial Patterns of Ship Traffic in the Canadian Arctic from 1990 to 2015. Arctic 2018, 71, 15–26. [Google Scholar] [CrossRef]
- Bergström, M.; Browne, T.; Ehlers, S.; Helle, I.; Herrnring, H.; Khan, F.; Kubiczek, J.; Kujala, P.; Kõrgesaar, M.; Leira, B.J.; et al. A Comprehensive Approach to scenario-based risk management for Arctic waters. Ship Technol. Res. 2022, 69, 129–157. [Google Scholar] [CrossRef]
- Glacial Ice Hazards Working Group. Report of the Inaugural Meeting; Technical Report; Water and Ice Research Laboratory, Carleton University: Ottawa, ON, Canada, 2016. [Google Scholar] [CrossRef]
- Tiffin, S.; Turnbull, I.; Sylvestre, T.; Acevedo, J. Advances in Beacon Technology to Track Drift of Sea Ice and Icebergs. In Proceedings of the 21st IAHR International Symposium on Ice, Dalian, China, 11–15 June 2012; pp. 660–673. [Google Scholar]
- Olenicoff, S. The Soviet DARMS program: Twenty years of development, deployment and data. AIDJEX Bull. 1973, 22, 8–35. [Google Scholar]
- Brown, W.; Kerut, E. Air droppable RAMS (ADRAMS) buoys. AIDJEX Bull. 1978, 40, 21–29. [Google Scholar]
- Marko, J.; Birch, J.; Wilson, M. A Study of Long-Term Satellite-Tracked Iceberg Drifts in Baffin Bay and Davis Strait. Arctic 1982, 35, 234–240. [Google Scholar] [CrossRef]
- Peterson, I.; Prinsenberg, S.; Pittman, M.; Desjardins, L. The Drift of an Exceptionally-Large Ice Island from the Petermann Glacier in 2008. In Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions, Lulea, Sweden, 9–12 June 2009; Volume 2, pp. 660–673. [Google Scholar]
- Peterson, I.; Prinsenberg, S. Drift of Sea Ice and Icebergs on the Labrador Shelf in 2009 and 2011 from Satellite-Tracked Ice Beacons. In Technical Report Canadian Technical Report of Hydrography and Ocean Sciences 295; Bedford Institute of Oceanography: Dartmouth, NS, Canada, 2014. [Google Scholar]
- International Ice Patrol (IIP). Report of the International Ice Patrol in the North Atlantic; Technical Report Bulletin No. 105 CG-188-74; International Ice Patrol: Suitland, ML, USA, 2019. [Google Scholar]
- Larsen, P.H.; Hansen, M.O.; Buus-Hinkler, J.; Krane, K.H.; Sønderskov, C. Field Tracking (GPS) of ten icebergs in eastern Baffin Bay, offshore Upernavik, northwest Greenland. J. Glaciol. 2015, 61, 421–437. [Google Scholar] [CrossRef]
- Jones, D.H.; Gudmundsson, G.H. Tracking B-31 iceberg with two aircraft-deployed sensors. Nat. Hazards Earth Syst. Sci. 2015, 15, 1243–1250. [Google Scholar] [CrossRef]
- Eik, K. Review of experiences within ice and iceberg management. J. Navig. 2008, 61, 557–572. [Google Scholar] [CrossRef]
- Kubat, I.; Sayed, M.; Savage, S.; Carrieres, T.; Crocker, G. An Operational Iceberg Deterioration Model. In Proceedings of the International Offshore and Polar Engineering Conference, Lisbon, Portugal, 1–6 July 2007; Volume 2, pp. 652–657. [Google Scholar]
- Garbo, A. Validation of the North American Ice Service Iceberg Drift Model. Master’s Thesis, University of Ottawa, Ottawa, ON, Canada, 2022. [Google Scholar] [CrossRef]
- Heiselberg, P.; Sørensen, K.A.; Heiselberg, H.; Andersen, O.B. SAR ship-iceberg discrimination in Arctic conditions using deep learning. Remote Sens. 2022, 14, 2236. [Google Scholar] [CrossRef]
- Zeinali Torbati, R.; Turnbull, I.D.; Taylor, R.S.; Mueller, D. Evaluation of the relative contribution of meteorological and oceanic forces to the drift of ice islands offshore Newfoundland. J. Glaciol. 2020, 66, 203–218. [Google Scholar] [CrossRef]
- Crawford, A.J.; Mueller, D.R.; Humphreys, E.R.; Carrieres, T.; Tran, H. Surface ablation model evaluation on a drifting ice island in the Canadian Arctic. Cold Reg. Sci. Technol. 2015, 110, 170–182. [Google Scholar] [CrossRef]
- Dalton, A. Identifying Iceberg Production Processes, Drift Patterns, and Coexistence with Ships in the Eastern Canadian Arctic. Ph.D. Thesis, University of Ottawa, Ottawa, ON, Canada, 2023. [Google Scholar] [CrossRef]
- Crawford, A.J.; Mueller, D.; Desjardins, L.; Myers, P.G. The aftermath of Petermann Glacier calving events (2008–2012): Ice island size distributions and meltwater dispersal. J. Geophys. Res. Ocean. 2018, 123, 8812–8827. [Google Scholar] [CrossRef]
- Crawford, A.J.; Wadhams, P.; Wagner, T.; Stern, A.; Abrahamsen, P.; Church, I.; Bates, R.; Nicholls, K. Journey of an arctic ice island. Oceanography 2016, 29, 254–263. [Google Scholar] [CrossRef]
- Perosanz, F. GNSS: A revolution for precise geopositioning. Comptes Rendus Phys. 2019, 20, 171–175. [Google Scholar] [CrossRef]
- Zogg, J.M. GPS: Essentials of Satellite Navigation: Compendium: Theorie and Principles of Satellite Navigation, Overview of GPS/GNSS Systems and Applications; u-blox: Thalwil, Switzerland, 2009. [Google Scholar]
- McGill, P.R.; Reisenbichler, K.R.; Etchemendy, S.A.; Dawe, T.C.; Hobson, B.W. Aerial surveys and tagging of free-drifting icebergs using an unmanned aerial vehicle (UAV). Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 1318–1326. [Google Scholar] [CrossRef]
- Prinsenberg, S.J.; Fowler, G.A.; van der Baaren, A. Pack ice convergence measurements by GPS–ARGOS ice beacons. Cold Reg. Sci. Technol. 1998, 28, 59–72. [Google Scholar] [CrossRef]
- McGonigal, D.; Hill, M.C.; Guzman, L.; Hagen, D. Ice drift in the Beaufort Sea from tracking beacons, winter 2009–2010. In Proceedings of the OTC Arctic Technology Conference, St. John’s, NL, Canada, 24–26 October 2016. [Google Scholar] [CrossRef]
- Sutherland, D.A.; Roth, G.E.; Hamilton, G.S.; Mernild, S.H.; Stearns, L.A.; Straneo, F. Quantifying flow regimes in a Greenland glacial fjord using iceberg drifters. Geophys. Res. Lett. 2014, 41, 8411–8420. [Google Scholar] [CrossRef]
- Carlson, D.F.; Boone, W.; Meire, L.; Abermann, J.; Rysgaard, S. Bergy Bit and Melt Water Trajectories in Godthåbsfjord (SW Greenland) Observed by the Expendable Ice Tracker. Front. Mar. Sci. 2017, 4, 276. [Google Scholar] [CrossRef]
- Carlson, D.F.; Pavalko, W.J.; Petersen, D.; Olsen, M.; Hass, A.E. Maker Buoy Variants for Water Level Monitoring and Tracking Drifting Objects in Remote Areas of Greenland. Sensors 2020, 20, 1254. [Google Scholar] [CrossRef]
- Lockridge, G.; Dzwonkowski, B.; Nelson, R.; Powers, S. Development of a Low-Cost Arduino-Based Sonde for Coastal Applications. Sensors 2016, 16, 528. [Google Scholar] [CrossRef]
- Beddows, P.A.; Mallon, E.K. Cave Pearl Data Logger: A Flexible Arduino-Based Logging Platform for Long-Term Monitoring in Harsh Environments. Sensors 2018, 18, 530. [Google Scholar] [CrossRef]
- Clark, P.; Funk, M.; Funk, B.; Funk, T.; Meadows, R.E.; Brown, A.M.; Li, L.; Massey, R.J.; Netterfield, C.B. An open source toolkit for the tracking, termination and recovery of high altitude balloon flights and payloads. J. Instrum. 2019, 14, P04003. [Google Scholar] [CrossRef]
- Planck, C.J.; Whitlock, J.; Polashenski, C.; Perovich, D. The evolution of the seasonal ice mass balance buoy. Cold Reg. Sci. Technol. 2019, 165, 102792. [Google Scholar] [CrossRef]
- Rabault, J.; Sutherland, G.; Gundersen, O.; Jensen, A.; Marchenko, A.; Breivik, Ø. An open source, versatile, affordable waves in ice instrument for scientific measurements in the Polar Regions. Cold Reg. Sci. Technol. 2020, 170, 102955. [Google Scholar] [CrossRef]
- Chan, K.; Schillereff, D.N.; Baas, A.C.W.; Chadwick, M.A.; Main, B.; Mulligan, M.; O’Shea, F.T.; Pearce, R.; Smith, T.E.L.; van Soesbergen, A.; et al. Low-Cost Electronic Sensors for Environmental Research: Pitfalls and Opportunities. Prog. Phys. Geogr. 2021, 45, 305–338. [Google Scholar] [CrossRef]
- International Air Transport Association (IATA). Lithium Batteries. Available online: https://www.iata.org/en/programs/cargo/dgr/lithium-batteries/ (accessed on 15 December 2023).
- Hart, M. TinyGPS Library. Available online: https://github.com/mikalhart/TinyGPS (accessed on 1 December 2023).
- Hart, M. IridiumSBD Library. Available online: https://github.com/mikalhart/IridiumSBD (accessed on 1 December 2023).
- Garbo, A.; Rajewicz, J.; Derek, M.; Adrienne, T. Iceberg Tracking Beacon Database; Canadian Cryospheric Information Network (CCIN): Waterloo, ON, Canada, 2024. [Google Scholar]
Component | Product | Version | Cost (USD) |
---|---|---|---|
Satellite transceiver | RockBLOCK 9603N | 1.0, 2.0 | $272 |
Satellite transceiver antenna | Maxtena M1621HCT-P-SMA | 1.0 | $54 |
Microcontroller | Adafruit Pro Trinket 3V 12 MHz | 1.0 | $10 |
Adafruit Feather M0 Basic Proto | 2.0 | $20 | |
GNSS receiver | Adafruit Ultimate GPS Breakout | 1.0 | $30 |
Adafruit Ultimate GPS FeatherWing | 2.0 | $25 | |
Accelerometer/magnetometer | Adafruit LSM303 | 1.0 | $15 |
Pololu LSM303D | 2.0 | $8 | |
Temperature/pressure sensor | Adafruit MPL3115A2 | 1.0 | $10 |
Real-time clock | Maxim DS3231SN + Adafruit SMT Breakout | 1.0 | $16 |
Adafruit DS3231 Precision RTC FeatherWing | 2.0 | $14 | |
Voltage regulator | Pololu 5 V, 2.5 A D24V22F5 | 1.0 | $12 |
Pololu 3.3 V, 600 mA D36V6F3 | 2.0 | $7 | |
Enclosure | Nanuk 905 | 1.0 | $74 |
Nanuk 903 | 2.0 | $48 | |
Battery | Tadiran TLP-93121-B-AL1 | 1.0, 2.0 | $145 |
Totals | 1.0 | $638 | |
2.0 | $539 |
Variable | Unit | Description | Size (Bytes) |
---|---|---|---|
unixtime | s | Unix time (seconds since 1970-01-01 epoch) | 4 |
temperature_int | °C | Internal temperature | 2 |
pressure_int | hPa | Internal pressure | 2 |
pitch | ° | Pitch angle | 2 |
roll | ° | Roll angle | 2 |
heading | ° | Tilt-compensated magnetic heading (0–360°) | 2 |
latitude | ° | GNSS latitude | 4 |
longitude | ° | GNSS longitude | 4 |
satellites | Number of GNSS satellites in view | 2 | |
hdop | GNSS horizontal dilution of precision | 2 | |
voltage | V | Battery voltage | 2 |
transmit_duration | s | Transmission time of SBD message | 2 |
message_counter | Number of transmitted messages | 2 |
IMEI | Deployment Date (yyyy-mm-dd) | Hardware Revision | Days Operational | Positions Recorded | Distance Travelled (km) | Cause of Termination |
---|---|---|---|---|---|---|
300434063418130 | 2018-09-03 | 1.0 | 435 | 10,231 | 506.2 | Iceberg deterioration |
300434063415110 | 2018-08-27 | 1.0 | 310 | 5670 | 4037.1 | Iceberg deterioration |
300434063419120 | 2018-08-28 | 1.0 | 709 | 10,665 | 2043.3 | Iceberg deterioration |
300434063411050 | 2018-08-28 | 1.0 | 748 | 10,491 | 616.7 | Iceberg deterioration |
300434063415160 | 2018-09-01 | 1.0 | 1460 | 28,944 | 417.3 | Battery depletion |
300434063416060 | 2018-09-01 | 1.0 | 386 | 1915 | 90.7 | Iceberg deterioration |
300234063265700 | 2019-08-01 | 2.0 | 1170 | 16,700 | 3352.3 | Iceberg deterioration |
300234065254740 | 2019-08-01 | 2.0 | 738 | 14,903 | 2270.7 | Inversion/water ingress |
300434063496100 * | 2019-08-01 | 2.0 | 1401 | 1272 | 4.9 | Inversion/water ingress |
300434063392350 * | 2019-08-01 | 2.0 | 399 | 621 | 1.4 | Inversion/water ingress |
300434063292950 * | 2019-07-30 | 2.0 | 1530 | 1566 | 5.5 | Currently active |
300434063498160 * | 2019-07-30 | 2.0 | 1402 | 1684 | 4.9 | Inversion/water ingress |
300434063494100 | 2019-08-05 | 2.0 | 803 | 5236 | 234.3 | Inversion/water ingress |
300434063392070 | 2019-08-05 | 2.0 | 1503 | 9963 | 529.7 | Iceberg deterioration |
300434063394110 | 2019-08-01 | 2.0 | 331 | 5220 | 169.5 | Iceberg deterioration |
300434063495310 | 2019-08-01 | 2.0 | 431 | 3272 | 2534.9 | Iceberg deterioration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbo, A.; Mueller, D. Cryologger Ice Tracking Beacon: A Low-Cost, Open-Source Platform for Tracking Icebergs and Ice Islands. Sensors 2024, 24, 1044. https://doi.org/10.3390/s24041044
Garbo A, Mueller D. Cryologger Ice Tracking Beacon: A Low-Cost, Open-Source Platform for Tracking Icebergs and Ice Islands. Sensors. 2024; 24(4):1044. https://doi.org/10.3390/s24041044
Chicago/Turabian StyleGarbo, Adam, and Derek Mueller. 2024. "Cryologger Ice Tracking Beacon: A Low-Cost, Open-Source Platform for Tracking Icebergs and Ice Islands" Sensors 24, no. 4: 1044. https://doi.org/10.3390/s24041044
APA StyleGarbo, A., & Mueller, D. (2024). Cryologger Ice Tracking Beacon: A Low-Cost, Open-Source Platform for Tracking Icebergs and Ice Islands. Sensors, 24(4), 1044. https://doi.org/10.3390/s24041044