Analysis of VOCs in Liquids through Vaporization in a Tubular Oven Monitored by Chemical Ionization Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents and Materials
2.2. Chemical Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometer
2.2.1. General Description of the CI-FT-ICR Mass Spectrometer
2.2.2. Sampling
2.2.3. Operating Sequence
2.3. Tubular Oven
2.4. Coupling the Tubular Oven with the CI-FT-ICR Mass Spectrometer
2.4.1. General Description of the Experimental Method
2.4.2. Sample Preparation
2.4.3. Sample Vaporization Procedure
2.4.4. Data Analysis and Analytes Quantification
3. Results
3.1. Optimization and Choice of the Operating Conditions
3.1.1. Temperature Ramp
3.1.2. Flow Rate of the Carrier Gas
3.1.3. Liquid Volume
3.1.4. Response at Different Toluene Concentrations: Linearity and Limit of Detection (LOD) for Toluene
3.2. Analysis of a Mixture of VOCs
3.2.1. Experimental Results and Comparison with Expected Mass Spectrum
3.2.2. Evaluation of Instrument Response and LOD Determination for the Seven VOCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuráň, P.; Soják, L. Environmental Analysis of Volatile Organic Compounds in Water and Sediment by Gas Chromatography. J. Chromatogr. A 1996, 733, 119–141. [Google Scholar] [CrossRef]
- Huybrechts, T.; Dewulf, J.; Moerman, O.; Van Langenhove, H. Evaluation of Purge-and-Trap-High-Resolution Gas Chromatography-Mass Spectrometry for the Determination of 27 Volatile Organic Compounds in Marine Water at the Ng l−1 Concentration Level. J. Chromatogr. A 2000, 893, 367–382. [Google Scholar] [CrossRef]
- Dewulf, J.; Van Langenhove, H.; Wittmann, G. Analysis of Volatile Organic Compounds Using Gas Chromatography. TrAC Trends Anal. Chem. 2002, 21, 637–646. [Google Scholar] [CrossRef]
- Yang, X.; Wang, C.; Shao, H.; Zheng, Q. Non-Targeted Screening and Analysis of Volatile Organic Compounds in Drinking Water by DLLME with GC–MS. Sci. Total Environ. 2019, 694, 133494. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, R.M.; de Andrade, M.V.F.; Marins, R.V.; Oliveira, L.D.M. Development of a Headspace-Gas Chromatography (HS-GC-PID-FID) Method for the Determination of VOCs in Environmental Aqueous Matrices: Optimization, Verification and Elimination of Matrix Effect and VOC Distribution on the Fortaleza Coast, Brazil. Microchem. J. 2010, 96, 337–343. [Google Scholar] [CrossRef]
- Ikem, A. Measurement of Volatile Organic Compounds in Bottled and Tap Waters by Purge and Trap GC–MS: Are Drinking Water Types Different? J. Food Compos. Anal. 2010, 23, 70–77. [Google Scholar] [CrossRef]
- Niri, V.H.; Bragg, L.; Pawliszyn, J. Fast Analysis of Volatile Organic Compounds and Disinfection By-Products in Drinking Water Using Solid-Phase Microextraction–Gas Chromatography/Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2008, 1201, 222–227. [Google Scholar] [CrossRef]
- Teske, J.; Efer, J.; Engewald, W. Large-Volume PTV Injection: Comparison of Direct Water Injection and in-Vial Extraction for GC Analysis of Triazines. Chromatographia 1998, 47, 35–41. [Google Scholar] [CrossRef]
- Teske, J.; Efer, J.; Engewald, W. Large-Volume PTV Injection: New Results on Direct Injection of Water Samples in GC Analysis. Chromatographia 1997, 46, 580–586. [Google Scholar] [CrossRef]
- Demeestere, K.; Dewulf, J.; De Witte, B.; Van Langenhove, H. Sample Preparation for the Analysis of Volatile Organic Compounds in Air and Water Matrices. J. Chromatogr. A 2007, 1153, 130–144. [Google Scholar] [CrossRef]
- Allers, M.; Langejuergen, J.; Gaida, A.; Holz, O.; Schuchardt, S.; Hohlfeld, J.M.; Zimmermann, S. Measurement of Exhaled Volatile Organic Compounds from Patients with Chronic Obstructive Pulmonary Disease (COPD) Using Closed Gas Loop GC-IMS and GC-APCI-MS. J. Breath Res. 2016, 10, 026004. [Google Scholar] [CrossRef] [PubMed]
- Bedner, M.; Saito, K. Development of a Liquid Chromatography Atmospheric Pressure Chemical Ionization Mass Spectrometry Method for Determining Off-Flavor Compounds and Its Application toward Marine Recirculating Aquaculture System Monitoring and Evaluation of Aeration as a Depuration Approach. J. Chromatogr. A 2020, 1609, 460499. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Shen, M.; Pan, Z.; Zhu, C.; Luo, D.; Zeng, L. Trace Analysis of Multiple Synthetic Phenolic Antioxidants in Foods by Liquid Chromatography–Tandem Mass Spectrometry with Complementary Use of Electrospray Ionization and Atmospheric Pressure Chemical Ionization. Food Chem. 2022, 375, 131663. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Santiago, M.; Priego-Capote, F.; Jurado-Gámez, B.; Luque De Castro, M.D. Optimization Study for Metabolomics Analysis of Human Sweat by Liquid Chromatography–Tandem Mass Spectrometry in High Resolution Mode. J. Chromatogr. A 2014, 1333, 70–78. [Google Scholar] [CrossRef]
- Delgado-Povedano, M.M.; Castillo-Peinado, L.S.; Calderón-Santiago, M.; Luque De Castro, M.D.; Priego-Capote, F. Dry Sweat as Sample for Metabolomics Analysis. Talanta 2020, 208, 120428. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Povedano, M.M.; Calderón-Santiago, M.; Priego-Capote, F.; Luque De Castro, M.D. Development of a Method for Enhancing Metabolomics Coverage of Human Sweat by Gas Chromatography–Mass Spectrometry in High Resolution Mode. Anal. Chim. Acta 2016, 905, 115–125. [Google Scholar] [CrossRef]
- Delgado-Povedano, M.M.; Calderón-Santiago, M.; Luque De Castro, M.D.; Priego-Capote, F. Metabolomics Analysis of Human Sweat Collected after Moderate Exercise. Talanta 2018, 177, 47–65. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Qi, Y.; Meng, M.; Cui, K. Comparative Study on the Volatile Organic Compounds and Characteristic Flavor Fingerprints of Five Varieties of Walnut Oil in Northwest China Using Using Headspace Gas Chromatography-Ion Mobility Spectrometry. Molecules 2023, 28, 2949. [Google Scholar] [CrossRef]
- Lindinger, W.; Jordan, A. Proton-Transfer-Reaction Mass Spectrometry (PTR–MS): On-Line Monitoring of Volatile Organic Compounds at Pptv Levels. Chem. Soc. Rev. 1998, 27, 347–375. [Google Scholar] [CrossRef]
- Ellis, A.M.; Mayhew, C.A. Proton Transfer Reaction Mass Spectrometry: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 978-1-118-68357-6. [Google Scholar]
- Lindinger, W.; Hansel, A.; Jordan, A. On-Line Monitoring of Volatile Organic Compounds at Pptv Levels by Means of Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) Medical Applications, Food Control and Environmental Research. Int. J. Mass Spectrom. Ion Process. 1998, 173, 191–241. [Google Scholar] [CrossRef]
- Tanimoto, H.; Aoki, N.; Inomata, S.; Hirokawa, J.; Sadanaga, Y. Development of a PTR-TOFMS Instrument for Real-Time Measurements of Volatile Organic Compounds in Air. Int. J. Mass Spectrom. 2007, 263, 1–11. [Google Scholar] [CrossRef]
- Cappellin, L.; Biasioli, F.; Fabris, A.; Schuhfried, E.; Soukoulis, C.; Märk, T.D.; Gasperi, F. Improved Mass Accuracy in PTR-TOF-MS: Another Step towards Better Compound Identification in PTR-MS. Int. J. Mass Spectrom. 2010, 290, 60–63. [Google Scholar] [CrossRef]
- Mauclaire, G.; Lemaire, J.; Boissel, P.; Bellec, G.; Heninger, M. MICRA: A Compact Permanent Magnet Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Eur. J. Mass Spectrom. 2004, 10, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Heninger, M.; Mestdagh, H.; Louarn, E.; Mauclaire, G.; Boissel, P.; Leprovost, J.; Bauchard, E.; Thomas, S.; Lemaire, J. Gas Analysis by Electron Ionization Combined with Chemical Ionization in a Compact FTICR Mass Spectrometer. Anal. Chem. 2018, 90, 7517–7525. [Google Scholar] [CrossRef] [PubMed]
- Lemaire, J.; Thomas, S.; Lopes, A.; Louarn, E.; Mestdagh, H.; Latappy, H.; Leprovost, J.; Heninger, M. Compact FTICR Mass Spectrometry for Real Time Monitoring of Volatile Organic Compounds. Sensors 2018, 18, 1415. [Google Scholar] [CrossRef]
- Louarn, E.; Asri-Idlibi, A.M.; Leprovost, J.; Héninger, M.; Mestdagh, H. Evidence of Reactivity in the Membrane for the Unstable Monochloramine during MIMS Analysis. Sensors 2018, 18, 4252. [Google Scholar] [CrossRef]
- Louarn, E.; Hamrouni, A.; Colbeau-Justin, C.; Bruschi, L.; Lemaire, J.; Heninger, M.; Mestdagh, H. Characterization of a Membrane Inlet Interfaced with a Compact Chemical Ionization FT-ICR for Real-Time and Quantitative VOC Analysis in Water. Int. J. Mass Spectrom. 2013, 353, 26–35. [Google Scholar] [CrossRef]
- Roumiguières, A.; Kinani, S.; Bouchonnet, S. Tracking Monochloramine Decomposition in MIMS Analysis. Sensors 2020, 20, 247. [Google Scholar] [CrossRef]
- Malfondet, N.; Brunerie, P.; Le Quéré, J.-L. Discrimination of French Wine Brandy Origin by PTR-MS Headspace Analysis Using Ethanol Ionization and Sensory Assessment. Anal. Bioanal. Chem. 2021, 413, 3349–3368. [Google Scholar] [CrossRef]
- Romano, A.; Capozzi, V.; Khomenko, I.; Biasioli, F. Advances in the Application of Direct Injection Mass Spectrometry Techniques to the Analysis of Grape, Wine and Other Alcoholic Beverages. Molecules 2023, 28, 7642. [Google Scholar] [CrossRef]
- Fiches, G.; Déléris, I.; Saint-Eve, A.; Brunerie, P.; Souchon, I. Modifying PTR-MS Operating Conditions for Quantitative Headspace Analysis of Hydro-Alcoholic Beverages. 2. Brandy Characterization and Discrimination by PTR-MS. Int. J. Mass Spectrom. 2014, 360, 15–23. [Google Scholar] [CrossRef]
- Aprea, E.; Biasioli, F.; Märk, T.D.; Gasperi, F. PTR-MS Study of Esters in Water and Water/Ethanol Solutions. Int. J. Mass Spectrom. 2007, 262, 114–121. [Google Scholar] [CrossRef]
- Karl, T.; Yeretzian, C.; Jordan, A.; Lindinger, W. Dynamic Measurements of Partition Coefficients Using Proton-Transfer-Reaction Mass Spectrometry (PTR–MS). Int. J. Mass Spectrom. 2003, 223–224, 383–395. [Google Scholar] [CrossRef]
- Liu, D.; Feilberg, A.; Nielsen, A.M.; Adamsen, A.P.S. PTR-MS Measurement of Partition Coefficients of Reduced Volatile Sulfur Compounds in Liquids from Biotrickling Filters. Chemosphere 2013, 90, 1396–1403. [Google Scholar] [CrossRef] [PubMed]
- Buhr, K.; van Ruth, S.; Delahunty, C. Analysis of Volatile Flavour Compounds by Proton Transfer Reaction-Mass Spectrometry: Fragmentation Patterns and Discrimination between Isobaric and Isomeric Compounds. Int. J. Mass Spectrom. 2002, 221, 1–7. [Google Scholar] [CrossRef]
- Kajos, M.K.; Rantala, P.; Hill, M.; Hellén, H.; Aalto, J.; Patokoski, J.; Taipale, R.; Hoerger, C.C.; Reimann, S.; Ruuskanen, T.M.; et al. Ambient Measurements of Aromatic and Oxidized VOCs by PTR-MS and GC-MS: Intercomparison between Four Instruments in a Boreal Forest in Finland. Atmos. Meas. Tech. 2015, 8, 4453–4473. [Google Scholar] [CrossRef]
- Latappy, H.; Lemaire, J.; Heninger, M.; Louarn, E.; Bauchard, E.; Mestdagh, H. Protonated 1,4-Difluorobenzene C6H5F2+: A Promising Precursor for Proton-Transfer Chemical Ionization. Int. J. Mass Spectrom. 2016, 405, 13–23. [Google Scholar] [CrossRef]
- Gueneron, M.; Erickson, M.H.; VanderSchelden, G.S.; Jobson, B.T. PTR-MS Fragmentation Patterns of Gasoline Hydrocarbons. Int. J. Mass Spectrom. 2015, 379, 97–109. [Google Scholar] [CrossRef]
- Karl, T.G.; Christian, T.J.; Yokelson, R.J.; Artaxo, P.; Hao, W.M.; Guenther, A. The Tropical Forest and Fire Emissions Experiment: Method Evaluation of Volatile Organic Compound Emissions Measured by PTR-MS, FTIR, and GC from Tropical Biomass Burning. Atmos. Chem. Phys. 2007, 7, 5883–5897. [Google Scholar] [CrossRef]
- Španěl, P.; Pavlik, M.; Smith, D. Reactions of H3O+ and OH− Ions with Some Organic Molecules; Applications to Trace Gas Analysis in Air. Int. J. Mass Spectrom. Ion Process. 1995, 145, 177–186. [Google Scholar] [CrossRef]
- Su, T.; Chesnavich, W.J. Parametrization of the Ion–Polar Molecule Collision Rate Constant by Trajectory Calculations. J. Chem. Phys. 1982, 76, 5183–5185. [Google Scholar] [CrossRef]
- Pagonis, D.; Sekimoto, K.; de Gouw, J. A Library of Proton-Transfer Reactions of H3O+ Ions Used for Trace Gas Detection. J. Am. Soc. Mass Spectrom. 2019, 30, 1330–1335. [Google Scholar] [CrossRef]
- Miller, K.J. Additivity Methods in Molecular Polarizability. J. Am. Chem. Soc. 1990, 112, 8533–8542. [Google Scholar] [CrossRef]
Compound | Molecular Formula | Molecular Weight (g·mol−1) | Vapor Pressure (Pa) at 20 °C | Dipole Moment (D) | Proton Affinity (kJ·mol−1) |
---|---|---|---|---|---|
Methanol | CH4O | 32.04 | 13,023 | 1.70 | 754.3 |
Ethanol | C2H6O | 46.08 | 5786 | 1.69 | 776.4 |
Acetone | C3H6O | 58.08 | 24,598 | 2.88 | 812.0 |
2-butanone | C4H8O | 72.11 | 9466 | 2.78 | 827.3 |
2-pentanone | C5H10O | 86.13 | 1600 | 2.70 | 832.7 |
1,4-dioxane | C4H8O2 | 88.11 | 3861 | 0 | 797.4 |
2-hexanone | C6H12O | 100.16 | 516 | 2.66 | 843.2 |
Compound | Expected/Detected Product Ions(s) | Detected m/z | Expected m/z | Δm × 10−3 (u) ** |
---|---|---|---|---|
Methanol | CH5O+ | 33.0350 | 33.0335 | +1.5 |
Ethanol | C2H7O+ | 47.0508 | 47.0491 | +1.7 |
Acetone | C3H7O+ | 59.0505 | 59.0491 | +1.4 |
2-butanone | C4H9O+ | 73.0650 | 73.0648 | +0.2 |
2-pentanone | C5H11O+ | 87.0798 | 87.0804 | -0.6 |
1,4-dioxane * | C4H9O2+ C2H5O+ | 89.0577 (0.80); 45.0347 (0.20) | 89.0597 45.0335 | −2.0 +1.2 |
2-hexanone | C6H13O+ | 101.0922 | 101.0961 | −3.9 |
VOC | Capture Rate Coefficients (10−9 cm3·s−1) | Experimental Relative Intensities of Ions for 300 µg·mL−1 Solution (%) | Expected Relative Intensities of Ions for 300 µg·mL−1 Solution (%) |
---|---|---|---|
Methanol | 2.30 | 17 | 23 |
Ethanol | 2.31 | 13 | 16 |
Acetone | 3.23 | 17 | 18 |
2-butanone | 3.21 | 17 | 14 |
2-pentanone | 3.19 | 13 | 12 |
1,4-dioxane | 1.80 | 8 | 6 |
2-hexanone | 3.19 * | 8 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abar, T.; Mestdagh, H.; Heninger, M.; Lemaire, J. Analysis of VOCs in Liquids through Vaporization in a Tubular Oven Monitored by Chemical Ionization Mass Spectrometry. Sensors 2024, 24, 1048. https://doi.org/10.3390/s24041048
Abar T, Mestdagh H, Heninger M, Lemaire J. Analysis of VOCs in Liquids through Vaporization in a Tubular Oven Monitored by Chemical Ionization Mass Spectrometry. Sensors. 2024; 24(4):1048. https://doi.org/10.3390/s24041048
Chicago/Turabian StyleAbar, Taous, Hélène Mestdagh, Michel Heninger, and Joel Lemaire. 2024. "Analysis of VOCs in Liquids through Vaporization in a Tubular Oven Monitored by Chemical Ionization Mass Spectrometry" Sensors 24, no. 4: 1048. https://doi.org/10.3390/s24041048
APA StyleAbar, T., Mestdagh, H., Heninger, M., & Lemaire, J. (2024). Analysis of VOCs in Liquids through Vaporization in a Tubular Oven Monitored by Chemical Ionization Mass Spectrometry. Sensors, 24(4), 1048. https://doi.org/10.3390/s24041048