Theoretical Analysis of GeSn Quantum Dots for Photodetection Applications
Abstract
:1. Introduction
2. Methods
2.1. GeSn Quantum Dot (QD) Structure
2.2. Theoretical Models
2.2.1. Strain Analysis
2.2.2. Band Structures
2.2.3. Quantum Confined States
2.2.4. Optical Absorption Coefficient
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rogalski, A. Infrared detectors: An overview. Infrared Phys. Technol. 2002, 43, 187–210. [Google Scholar] [CrossRef]
- Arslan, Y.; Oguz, F.; Besikci, C. Extended wavelength SWIR InGaAs focal plane array: Characteristics and limitations. Infrared Phys. Technol. 2015, 70, 134–137. [Google Scholar] [CrossRef]
- Kasiyan, V.; Dashevsky, Z.; Minna Schwarz, C.; Shatkhin, M.; Flitsiyan, E.; Chernyak, L.; Khokhlov, D. Infrared detectors based on semiconductor p-n junction of PbSe. J. Appl. Phys. 2012, 112, 2013–2016. [Google Scholar] [CrossRef]
- Deen, M.J.; Basu, P.K. Silicon Photonics: Fundamentals and Devices; Wiley: Chichester, UK, 2012. [Google Scholar]
- Gupta, J.P.; Bhargava, N.; Kim, S.; Adam, T.; Kolodzey, J. Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy. Appl. Phys. Lett. 2013, 102, 251117. [Google Scholar] [CrossRef]
- Bauer, M.; Taraci, J.; Tolle, J.; Chizmeshya, A.V.G.; Zollner, S.; Smith, D.J.; Menendez, J.; Hu, C.; Kouvetakis, J. Ge-Sn semiconductors for band-gap and lattice engineering. Appl. Phys. Lett. 2002, 81, 2992–2994. [Google Scholar] [CrossRef]
- Chizmeshya, A.V.G.; Ritter, C.; Tolle, J.; Cook, C.; Menéndez, J.; Kouvetakis, J. Fundamental studies of P(GeH3)3, As(GeH3)3, and Sb(GeH3)3: Practical n-dopants for new group IV semiconductors. Chem. Mater. 2006, 18, 6266–6277. [Google Scholar] [CrossRef]
- Chang, G.-E.; Yu, S.-Q.; Liu, J.; Cheng, H.H.; Soref, R.A.; Sun, G. Achievable performance of uncooled homojunction GeSn mid-infrared Photodetectors. IEEE J. Sel. Quantum Electron. 2022, 28, 3800611. [Google Scholar] [CrossRef]
- Ghosh, S.; Bansal, R.; Sun, G.; Soref, R.A.; Cheng, H.H.; Chang, G.-E. Design and optimization of GeSn waveguide photodetectors for 2-μm band Silicon photonics. Sensors 2022, 22, 3978. [Google Scholar] [CrossRef] [PubMed]
- Soref, R. Mid-infrared photonics. In Proceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, CA, USA, 22–26 March 2015. [Google Scholar]
- Chang, G.-E.; Basu, R.; Mukhopadhyay, B.; Basu, P.K. Design and modeling of GeSn-based heterojunction phototransistors for communication applications. IEEE J. Sel. Quantum Electron. 2016, 22, 8200409. [Google Scholar] [CrossRef]
- Oka, H.; Inoue, K.; Nguyen, T.T.; Kuroki, S.; Hosoi, T.; Shimura, T.; Watanabe, H. Back-side illuminated GeSn photodiode array on quartz substrate fabricated by laser-induced liquid-phase crystallization for monolithically-integrated NIR imager chip. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017. [Google Scholar]
- Wang, N.; Xue, C.; Wan, F.; Zhao, Y.; Xu, G.; Liu, Z.; Zheng, J.; Zuo, Y.; Cheng, B.; Wang, Q. High-performance GeSn photodetector covering all telecommunication bands. IEEE Photonics J. 2021, 13, 6800809. [Google Scholar] [CrossRef]
- Wang, W.; Lei, D.; Huang, Y.C.; Lee, K.H.; Loke, W.K.; Dong, Y.; Xu, S.; Tan, C.S.; Wang, H.; Yoon, S.F.; et al. High-performance GeSn photodetector and fin field-effect transistor (FinFET) on an advanced GeSn-on-insulator platform. Opt. Express 2018, 26, 10305–10314. [Google Scholar] [CrossRef]
- Atalla, M.R.M.; Assali, S.; Koelling, S.; Attiaoui, A.; Moutanabbir, O. High-bandwidth extended-SWIR GeSn photodetectors on silicon achieving ultrafast broadband spectroscopic response. ACS Photonics 2022, 9, 1425–1433. [Google Scholar] [CrossRef]
- Nawwar, M.A.; Ghazala, M.S.A.; El-Deen, L.M.S.; Anis, B.; El-Shaer, A.; Elseman, A.M.; Rashad, M.M.; Kashyout, A.E.H.B. Controlling barrier height and spectral responsivity of p-i-n based GeSn photodetectors via arsenic incorporation. RSC Adv. 2023, 13, 9154–9167. [Google Scholar] [CrossRef]
- Tran, H.; Pham, T.; Margetis, J.; Zhou, Y.; Dou, W.; Grant, P.C.; Grant, J.M.; Al-Kabi, S.; Sun, G.; Soref, R.A.; et al. Si-based GeSn photodetectors toward mid-Infrared imaging applications. ACS Photonics 2019, 6, 2807–2815. [Google Scholar] [CrossRef]
- McCarthy, T.T.; Ju, Z.; Schaefer, S.; Yu, S.-Q.; Zhang, Y.-H. Momentum (k)-space carrier separation using SiGeSn alloys for photodetector applications. J. Appl. Phys. 2021, 130, 223102. [Google Scholar] [CrossRef]
- Ghosh, S.; Sun, G.; Morgan, T.A.; Forcherio, G.T.; Cheng, H.-H.; Chang, G.-E. Dark Current Analysis on GeSn p-i-n Photodetectors. Sensors 2023, 23, 7531. [Google Scholar] [CrossRef]
- Nejad, S.M.; Olyaee, S.; Pourmahyabadi, M. Optimal dark current reduction in quantum well 9 µm GaAs/AlGaAs infrared photodetectors with improved detectivity. Am. J. Appl. Sci. 2008, 5, 1071–1078. [Google Scholar]
- Zaima, S.; Nakatsuka, O.; Taoka, N.; Kurosawa, M.; Takeuchi, W.; Sakashita, M. Growth and applications of GeSn-related group-IV semiconductor materials. Sci. Technol. Adv. Mater. 2015, 16, 43502. [Google Scholar] [CrossRef] [PubMed]
- Moto, K.; Yoshimine, R.; Suemasu, T.; Toko, K. Improving carrier mobility of polycrystalline Ge by Sn doping. Sci. Rep. 2018, 8, 14832. [Google Scholar] [CrossRef] [PubMed]
- Mosleh, A.; Ghetmiri, S.A.; Conley, B.R.; Hawkridge, M.; Benamara, M.; Nazzal, A.; Tolle, J.; Yu, S.-Q.; Naseem, H.A. Material characterization of Ge1−xSnx alloys grown by a commercial CVD system for optoelectronic device applications. J. Electron. Mater. 2014, 43, 938–946. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Stiff-Roberts, A.D.; Bhattacharya, P.; Gunapala, S.; Bandara, S.; Rafol, S.B.; Kennerly, S.W. High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity. IEEE Photon. Technol. Lett. 2004, 16, 1361–1363. [Google Scholar] [CrossRef]
- Su, X.H.; Chakrabarti, S.; Bhattacharya, P.; Ariyawansa, G.; Perera, A.G.U. A resonant tunneling quantum dot infrared photodetector. IEEE J. Quantum Electron. 2005, 41, 974–979. [Google Scholar]
- Jiang, J.; Tsao, S.; O’sullivan, T.; Zhang, W.; Lim, H.; Sills, T.; Mi, K.; Razeghi, M.; Brown, G.J.; Tidrow, M.Z. High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition. Appl. Phys. Lett. 2004, 84, 2166–2168. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Su, X.H.; Chakrabarti, S.; Ariyawansa, G.; Perera, A.G.U. Characteristics of a tunneling quantum dot infrared photodetector operating at room temperature. Appl. Phys. Lett. 2005, 86, 191106–191108. [Google Scholar] [CrossRef]
- Tang, S.F.; Chiang, C.D.; Weng, P.K.; Gau, Y.T.; Luo, J.J.; Yang, S.T.; Shih, C.C.; Lin, S.Y.; Lee, S.C. High-temperature operation normal incident 256 × 256 InAs-GaAs quantum-dot infrared photodetector focal plane array. IEEE Photon. Technol. Lett. 2006, 18, 986–988. [Google Scholar] [CrossRef]
- Gunapala, S.D.; Bandara, S.V.; Hill, C.J.; Ting, D.Z.; Liu, J.K.; Rafol, B.; Blazejewski, E.R.; Mumolo, J.M.; Keo, S.A.; Krishna, S.; et al. 640 × 512 pixels long-wavelength infrared (LWIR) quantum-dot infrared photodetector (QDIP) imaging focal plane array. IEEE J. Quantum Electron. 2007, 43, 230–237. [Google Scholar] [CrossRef]
- Brunner, K.; Herbst, M.; Bougeard, D.; Miesner, C.; Asperger, T.; Schramm, C.; Abstreiter, G. Ge quantum dots in Si: Self-assembly, stacking and level spectroscopy. Phys. E Low-Dimens. Syst. Nanostructures 2002, 13, 1018–1021. [Google Scholar] [CrossRef]
- Santalla, S.N.; Kanyinda-Malu, C.; de la Cruz, R.M. Stranski–Krastanov growth mode in Ge/Si (001) self-assembled quantum dots. J. Cryst. Growth 2003, 253, 190–197. [Google Scholar] [CrossRef]
- Yakimov, A.L.; Kirienko, V.V.; Bloskhin, A.; Utkin, D.E.; Dvurechenskii, A.V. Near-infrared photoresponse in Ge/Si quantum dots enhanced by photon-trapping hole arrays. Nanomaterials 2022, 12, 2993. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Narusawa, S.; Chiba, T.; Tsuboi, T.; Xia, J.; Usami, N.; Maruizumi, T.; Siraki, Y. Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities. J. Sel. Top. Quantum Electron. 2012, 18, 1830–1838. [Google Scholar]
- Stepikhova, M.V.; Novikov, A.V.; Yablonskiy, A.N.; Shaleev, M.V.; Utkin, D.E.; Rutckaia, V.V.; Skorokhodov, E.V.; Sergeev, S.M.; Yurasov, D.V.; Krasilnik, Z.F. Light emission from Ge(Si)/SOI self-assembled nanoislands embedded in photonic crystal slabs of various periods with and without cavities. Semicond. Sci. Technol. 2019, 34, 024003. [Google Scholar] [CrossRef]
- Baira, M.; Salem, B.; Madhar, N.A.; Ilahi, B. Tuning direct bandgap GeSn/Ge quantum dots’ interband and intraband useful emission wavelength: Towards CMOS compatible infrared optical devices. Superlattices Microstruct. 2018, 117, 31–35. [Google Scholar] [CrossRef]
- Zhang, L.; Hong, H.; Li, C.; Chen, S.; Huang, W.; Wang, J.; Wang, H. High-Sn fraction GeSn quantum dots for Si-based light source at 1.55 μm. Appl. Phys. Express 2019, 12, 055504. [Google Scholar] [CrossRef]
- Zhang, L.; Hong, H.; Qian, K.; Wu, S.; Lin, G.; Wang, J.; Huang, W.; Chen, S.; Li, C. Controllable synthesis of Si-based GeSn quantum dots with room-temperature photoluminescence. Appl. Surf. Sci. 2022, 579, 152249. [Google Scholar] [CrossRef]
- Kuo, M.K.; Lin, T.R.; Hong, K.B.; Liao, B.T.; Lee, H.T.; Yu, C.H. Two-step strain analysis of self-assembled InAs/GaAs quantum dots. Semicond. Sci. Technol. 2006, 21, 626–632. [Google Scholar] [CrossRef]
- Chang, G.-E.; Chang, S.W.; Chuang, S.L. Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers. IEEE J. Quantum Electron. 2010, 46, 1813–1820. [Google Scholar] [CrossRef]
- Chuang, S.L. Physics of Photonic Devices, 2nd ed.; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Van de Walle, C.G. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 1989, 39, 1871–1883. [Google Scholar] [CrossRef]
- Al-Saigh, R.; Baira, M.; Salem, B.; Ilahi, B. Design of strain-engineered GeSn/GeSiSn quantum dots for mid-IR direct bandgap emission on Si substrate. Nanoscale Res. Lett. 2018, 13, 172. [Google Scholar] [CrossRef] [PubMed]
- Eales, T.D.; Marko, I.P.; Schulz, S.; O’Halloran, E.; Ghetmiri, S.; Du, W.; Zhou, Y.; Yu, S.Q.; Margetis, J.; Tolle, J.; et al. Ge1−xSnx alloys: Consequences of band mixing effects for the evolution of the band gap Γ-character with Sn concentration. Sci. Rep. 2019, 9, 14077. [Google Scholar] [CrossRef]
- Hu, A.-Q.; Liu, Q.-L.; Guo, X. Carrier localization enhanced high responsivity in graphene/semiconductor photodetectors. Chip 2022, 1, 100006. [Google Scholar] [CrossRef]
- Tran, H.; Du, W.; Ghetmiri, S.A.; Mosleh, A.; Sun, G.; Soref, R.; Margetis, J.; Tolle, J.; Li, B.; Naseem, H.; et al. Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics. J. Appl. Phys. 2016, 119, 103106. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, P.-H.; Ghosh, S.; Chang, G.-E. Theoretical Analysis of GeSn Quantum Dots for Photodetection Applications. Sensors 2024, 24, 1263. https://doi.org/10.3390/s24041263
Lin P-H, Ghosh S, Chang G-E. Theoretical Analysis of GeSn Quantum Dots for Photodetection Applications. Sensors. 2024; 24(4):1263. https://doi.org/10.3390/s24041263
Chicago/Turabian StyleLin, Pin-Hao, Soumava Ghosh, and Guo-En Chang. 2024. "Theoretical Analysis of GeSn Quantum Dots for Photodetection Applications" Sensors 24, no. 4: 1263. https://doi.org/10.3390/s24041263
APA StyleLin, P. -H., Ghosh, S., & Chang, G. -E. (2024). Theoretical Analysis of GeSn Quantum Dots for Photodetection Applications. Sensors, 24(4), 1263. https://doi.org/10.3390/s24041263