Effect of Reduced Feedback Frequencies on Motor Learning in a Postural Control Task in Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.2.1. Assessments
2.2.2. Training Protocol
2.3. Instruments and Postural Control Measurements
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sigrist, R.; Rauter, G.; Riener, R.; Wolf, P. Augmented Visual, Auditory, Haptic, and Multimodal Feedback in Motor Learning: A Review. Psychon. Bull. Rev. 2013, 20, 21–53. [Google Scholar] [CrossRef]
- Mödinger, M.; Woll, A.; Wagner, I. Video-Based Visual Feedback to Enhance Motor Learning in Physical Education—A Systematic Review. Ger. J. Exerc. Sport Res. 2022, 52, 447–460. [Google Scholar] [CrossRef]
- Jimenez-Diaz, J.; Chaves-Castro, K.; Morera-Castro, M. Effect of Self-Controlled and Regulated Feedback on Motor Skill Performance and Learning: A Meta-Analytic Study. J. Mot. Behav. 2021, 53, 385–398. [Google Scholar] [CrossRef]
- Moinuddin, A.; Goel, A.; Sethi, Y. The Role of Augmented Feedback on Motor Learning: A Systematic Review. Cureus 2021, 13, e19695. [Google Scholar] [CrossRef]
- Oppici, L.; Dix, A.; Narciss, S. When Is Knowledge of Performance (KP) Superior to Knowledge of Results (KR) in Promoting Motor Skill Learning? A Systematic Review. Int. Rev. Sport Exerc. Psychol. 2021, 1–25. [Google Scholar] [CrossRef]
- Jakus, G.; Stojmenova, K.; Tomažič, S.; Sodnik, J. A System for Efficient Motor Learning Using Multimodal Augmented Feedback. Multimed. Tools Appl. 2017, 76, 20409–20421. [Google Scholar] [CrossRef]
- McKay, B.; Hussien, J.; Vinh, M.-A.; Mir-Orefice, A.; Brooks, H.; Ste-Marie, D.M. Meta-Analysis of the Reduced Relative Feedback Frequency Effect on Motor Learning and Performance. Psychol. Sport Exerc. 2022, 61, 102165. [Google Scholar] [CrossRef]
- Sigrist, R. Visual and Auditory Augmented Concurrent Feedback in a Complex Motor Task. Presence 2011, 20, 15–32. [Google Scholar] [CrossRef]
- Shea, C.H.; Wulf, G. Enhancing Motor Learning through External-Focus Instructions and Feedback. Hum. Mov. Sci. 1999, 18, 553–571. [Google Scholar] [CrossRef]
- Rucci, J.A.; Tomporowski, P.D. Three Types of Kinematic Feedback and the Execution of the Hang Power Clean. J. Strength. Cond. Res. 2010, 24, 771–778. [Google Scholar] [CrossRef]
- Newell, K.M.; Morris, L.R.; Scully, D.M. Augmented Information and the Acquisition of Skill in Physical Activity. Exerc. Sport Sci. Rev. 1985, 13, 235–261. [Google Scholar] [CrossRef]
- Sigrist, R.; Rauter, G.; Riener, R.; Wolf, P. Terminal Feedback Outperforms Concurrent Visual, Auditory, and Haptic Feedback in Learning a Complex Rowing-Type Task. J. Mot. Behav. 2013, 45, 455–472. [Google Scholar] [CrossRef]
- Schoenmaker, J.; Houdijk, H.; Steenbergen, B.; Reinders-Messelink, H.A.; Schoemaker, M.M. Effectiveness of Different Extrinsic Feedback Forms on Motor Learning in Children with Cerebral Palsy: A Systematic Review. Disabil. Rehabil. 2023, 45, 1271–1284. [Google Scholar] [CrossRef]
- De Fazio, R.; Mastronardi, V.M.; De Vittorio, M.; Visconti, P. Wearable Sensors and Smart Devices to Monitor Rehabilitation Parameters and Sports Performance: An Overview. Sensors 2023, 23, 1856. [Google Scholar] [CrossRef]
- Abbas, Z.A.; North, J.S. Good-vs. Poor-Trial Feedback in Motor Learning: The Role of Self-Efficacy and Intrinsic Motivation across Levels of Task Difficulty. Learn. Instr. 2018, 55, 105–112. [Google Scholar] [CrossRef]
- Salmoni, A.W.; Schmidt, R.A.; Walter, C.B. Knowledge of Results and Motor Learning: A Review and Critical Reappraisal. Psychol. Bull. 1984, 95, 355–386. [Google Scholar] [CrossRef]
- Schmidt, R.A. Frequent Augmented Feedback Can Degrade Learning: Evidence and Interpretations. In Tutorials in Motor Neuroscience; Requin, J., Stelmach, G.E., Eds.; NATO ASI Series; Springer: Dordrecht, The Netherlands, 1991; pp. 59–75. ISBN 978-94-011-3626-6. [Google Scholar]
- Fujii, S.; Lulic, T.; Chen, J.L. More Feedback Is Better than Less: Learning a Novel Upper Limb Joint Coordination Pattern with Augmented Auditory Feedback. Front. Neurosci. 2016, 10, 251. [Google Scholar] [CrossRef]
- Ronsse, R.; Puttemans, V.; Coxon, J.P.; Goble, D.J.; Wagemans, J.; Wenderoth, N.; Swinnen, S.P. Motor Learning with Augmented Feedback: Modality-Dependent Behavioral and Neural Consequences. Cereb. Cortex 2011, 21, 1283–1294. [Google Scholar] [CrossRef]
- Marco-Ahulló, A.; Sánchez-Tormo, A.; García-Pérez, J.A.; Villarrasa-Sapiña, I.; González, L.M.; García-Massó, X. Effect of Concurrent Visual Feedback Frequency on Postural Control Learning in Adolescents. J. Mot. Behav. 2019, 51, 193–198. [Google Scholar] [CrossRef]
- Sparrow, W.A.; Summers, J.J. Performance on Trials without Knowledge Results (KR) in Reduced Relative Frequency Presentations of KR. J. Mot. Behav. 1992, 24, 197–209. [Google Scholar] [CrossRef]
- Winstein, C.J.; Schmidt, R.A. Reduced Frequency of Knowledge of Results Enhances Motor Skill Learning. J. Exp. Psychol.Learn. Mem. Cogn. 1990, 16, 677–691. [Google Scholar] [CrossRef]
- Sparrow, W.A. Acquisition and Retention Effects of Reduced Relative Frequency of Knowledge of Results. Aust. J. Psychol. 1995, 47, 97–104. [Google Scholar] [CrossRef]
- Wishart, L.R.; Lee, T.D. Effects of Aging and Reduced Relative Frequency of Knowledge of Results on Learning a Motor Skill. Percept. Mot. Ski. 1997, 84, 1107–1122. [Google Scholar] [CrossRef]
- Sánchez-Tormo, A.; Marco-Ahulló, A.; Estevan, I.; Monfort-Torres, G.; García-Massó, X. Rate of Concurrent Augmented Auditory Feedback in Postural Control Learning in Adolescents. Mov. Sports Sci.-Sci. Mot. 2020, 109, 15–21. [Google Scholar] [CrossRef]
- Gandía, J.; García-Massó, X.; Marco-Ahulló, A.; Estevan, I. Adolescents’ Postural Control Learning According to the Frequency of Knowledge of Process. J. Mot. Learn. Dev. 2019, 7, 204–214. [Google Scholar] [CrossRef]
- Oppici, L.; Panchuk, D. Specific and General Transfer of Perceptual-Motor Skills and Learning between Sports: A Systematic Review. Psychol. Sport Exerc. 2022, 59, 102118. [Google Scholar] [CrossRef]
- Komar, J.; Ong, C.Y.Y.; Choo, C.Z.Y.; Chow, J.Y. Perceptual-Motor Skill Transfer: Multidimensionality and Specificity of Both General and Specific Transfers. Acta Psychol. 2021, 217, 103321. [Google Scholar] [CrossRef]
- Sullivan, K.J.; Kantak, S.S.; Burtner, P.A. Motor Learning in Children: Feedback Effects on Skill Acquisition. Phys. Ther. 2008, 88, 720–732. [Google Scholar] [CrossRef]
- Park, D.-S.; Lee, G. Validity and Reliability of Balance Assessment Software Using the Nintendo Wii Balance Board: Usability and Validation. J. Neuroeng. Rehabil. 2014, 11, 99. [Google Scholar] [CrossRef]
- Clark, R.A.; Mentiplay, B.F.; Pua, Y.-H.; Bower, K.J. Reliability and Validity of the Wii Balance Board for Assessment of Standing Balance: A Systematic Review. Gait Posture 2018, 61, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Larsen, L.R.; Jorgensen, M.G.; Junge, T.; Juul-Kristensen, B.; Wedderkopp, N. Field Assessment of Balance in 10 to 14 Year Old Children, Reproducibility and Validity of the Nintendo Wii Board. BMC Pediatr. 2014, 14, 144. [Google Scholar] [CrossRef] [PubMed]
- Villarrasa Sapiña, I. Influencia de la Obesidad Infantil Sobre el Control Postural y la Marcha. Ph.D. Thesis, Universitat de València, Valencia, Spain, 2019. Available online: https://roderic.uv.es/items/b24db3ed-4a4b-4e7c-9d8c-845f13de9ff7 (accessed on 16 December 2023).
- Paillard, T.; Noé, F. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects. Biomed. Res. Int. 2015, 2015, 891390. [Google Scholar] [CrossRef] [PubMed]
- Weeks, D.L.; Kordus, R.N. Relative Frequency of Knowledge of Performance and Motor Skill Learning. Res. Q. Exerc. Sport 1998, 69, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Bruechert, L.; Lai, Q.; Shea, C.H. Reduced Knowledge of Results Frequency Enhances Error Detection. Res. Q. Exerc. Sport 2003, 74, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Maslovat, D.; Brunke, K.M.; Chua, R.; Franks, I.M. Feedback Effects on Learning a Novel Bimanual Coordination Pattern: Support for the Guidance Hypothesis. J. Mot. Behav. 2009, 41, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, J.E. Scheduling Concurrent Visual Feedback in Learning a Continuous Balance Task. J. Mot. Learn. Dev. 2019, 7, 261–272. [Google Scholar] [CrossRef]
- Goodwin, J.E.; Goggin, N.L. An Older Adult Study of Concurrent Visual Feedback in Learning Continuous Balance. Percept. Mot. Skills 2018, 125, 1160–1172. [Google Scholar] [CrossRef]
- Seidler, R.D. Neural Correlates of Motor Learning, Transfer of Learning, and Learning to Learn. Exerc. Sport Sci. Rev. 2010, 38, 3–9. [Google Scholar] [CrossRef]
- Mansfield, A.; Aqui, A.; Fraser, J.E.; Rajachandrakumar, R.; Lakhani, B.; Patterson, K.K. Can Augmented Feedback Facilitate Learning a Reactive Balance Task among Older Adults? Exp. Brain Res. 2017, 235, 293–304. [Google Scholar] [CrossRef]
- Levac, D.E.; Lu, A.S. Does Narrative Feedback Enhance Children’s Motor Learning in a Virtual Environment? J. Mot. Behav. 2019, 51, 199–211. [Google Scholar] [CrossRef]
- Todorov, E.; Shadmehr, R.; Bizzi, E. Augmented Feedback Presented in a Virtual Environment Accelerates Learning of a Difficult Motor Task. J. Mot. Behav. 1997, 29, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Hemayattalab, R. Effects of Self-Control and Instructor-Control Feedback on Motor Learning in Individuals with Cerebral Palsy. Res. Dev. Disabil. 2014, 35, 2766–2772. [Google Scholar] [CrossRef] [PubMed]
- Seidler, R.D.; Noll, D.C. Neuroanatomical Correlates of Motor Acquisition and Motor Transfer. J. Neurophysiol. 2008, 99, 1836–1845. [Google Scholar] [CrossRef] [PubMed]
Group | Age (Years) | Weight (kg) | Height (cm) | BMI (kg × cm2) | Gender (Male/Female) |
---|---|---|---|---|---|
Control | 21.8 | 67.4 | 173 | 21.8 | 7/8 |
n = 15 | (3.41) | (15) | (10.3) | (3.07) | |
100% Visual Feedback | 23.9 | 72 | 175 | 23.3 | 11/4 |
n = 15 | (8.63) | (16.1) | (9.7) | (3.14) | |
67% Visual Feedback | 23.4 | 63.6 | 166 | 22.6 | 4/11 |
n = 15 | (6.05) | (9.19) | (5.89) | (2.13) | |
33% Visual Feedback | 22.5 | 63.2 | 166 | 22.8 | 7/8 |
n = 15 | (6.17) | (11.3) | (8.35) | (3.38) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marco-Ahulló, A.; Villarrasa-Sapiña, I.; Romero-Martínez, J.; Monfort-Torres, G.; Toca-Herrera, J.L.; García-Massó, X. Effect of Reduced Feedback Frequencies on Motor Learning in a Postural Control Task in Young Adults. Sensors 2024, 24, 1404. https://doi.org/10.3390/s24051404
Marco-Ahulló A, Villarrasa-Sapiña I, Romero-Martínez J, Monfort-Torres G, Toca-Herrera JL, García-Massó X. Effect of Reduced Feedback Frequencies on Motor Learning in a Postural Control Task in Young Adults. Sensors. 2024; 24(5):1404. https://doi.org/10.3390/s24051404
Chicago/Turabian StyleMarco-Ahulló, Adrià, Israel Villarrasa-Sapiña, Jorge Romero-Martínez, Gonzalo Monfort-Torres, Jose Luis Toca-Herrera, and Xavier García-Massó. 2024. "Effect of Reduced Feedback Frequencies on Motor Learning in a Postural Control Task in Young Adults" Sensors 24, no. 5: 1404. https://doi.org/10.3390/s24051404
APA StyleMarco-Ahulló, A., Villarrasa-Sapiña, I., Romero-Martínez, J., Monfort-Torres, G., Toca-Herrera, J. L., & García-Massó, X. (2024). Effect of Reduced Feedback Frequencies on Motor Learning in a Postural Control Task in Young Adults. Sensors, 24(5), 1404. https://doi.org/10.3390/s24051404