A Three-Wavelength Optical Sensor for Measuring the Multi-Particle-Size Channel Mass Concentration of Thermal Power Plant Emissions
Abstract
:1. Introduction
2. Proposed Three-Wavelength Based Measurement Method
2.1. Mass Concentration Measurement Based on Particle Size
2.2. Retrieval of the PSD Based on Three Wavelengths
3. Design of the Three-Wavelength Optical Sensor
3.1. Optical Structure
3.2. Sampling System
4. Tests Results
4.1. Continuous Operation Test
4.2. PM10, PM2.5, and PM1 Mass Concentration Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Picone, N.; Esposito, A.; Emmanuel, R.; Buccolieri, R. Potential Impacts of Green Infrastructure on NOx and PM10 in Different Local Climate Zones of Brindisi, Italy. Sustainability 2024, 16, 229. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, L.; Zhu, J.; Chen, H.; Yuan, H. Double decomposition and optimal combination ensemble learning approach for interval-valued AQI forecasting using streaming data. Environ. Sci. Pollut. Res. 2020, 27, 37802–37817. [Google Scholar] [CrossRef]
- Wang, W.-C.V.; Lin, T.-H.; Liu, C.-H.; Su, C.-W.; Lung, S.-C.C. Fusion of Environmental Sensing on PM2.5 and Deep Learning on Vehicle Detecting for Acquiring Roadside PM2.5 Concentration Increments. Sensors 2020, 20, 4679. [Google Scholar] [CrossRef]
- Hahad, O.; Lelieveld, J.; Birklein, F.; Lieb, K.; Daiber, A.; Münzel, T. Ambient Air Pollution Increases the Risk of Cerebrovascular and Neuropsychiatric Disorders through Induction of Inflammation and Oxidative Stress. Int. J. Mol. Sci. 2020, 21, 4306. [Google Scholar] [CrossRef]
- Gou, H.; Lu, J.; Li, S.; Tong, Y.; Xie, C.; Zheng, X. Assessment of microbial communities in PM1 and PM10 of Urumqi during winter. Environ. Pollut 2016, 214, 202. [Google Scholar] [CrossRef]
- Lu, R.; Li, Y.; Li, W.; Xie, Z.; Fan, C.; Liu, P.; Deng, S. Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi’an, China. Sci. Total Environ. 2018, 637–638, 244–252. [Google Scholar] [CrossRef]
- Hu, X.; Li, Q.; Shao, S.; Zeng, Q.; Jiang, S.; Wu, Q.; Jiang, C. Potential lung carcinogenicity induced by chronic exposure to PM2.5 in the rat. Environ. Sci. Pollut. Res. 2017, 24, 18991–19000. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-H.; Chien, S.-M.; Chao, M.-R.; Wang, Y.-F. Size Distribution of Particulate Polycyclic Aromatic Hydrocarbons in the Diluted Four-stroke Motorcycle Exhausts. Aerosol Air Qual. Res. 2005, 5, 225–235. [Google Scholar] [CrossRef]
- Brauer, M.; Avila-Casado, C.; Fortoul, T.I.; Vedal, S.; Stevens, B.; Churg, A. Air pollution and retained particles in the lung. Environ. Health Perspect. 2001, 109, 1039–1043. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Deng, J.; Zhang, Y.; Zhang, Q.; Duan, L.; Hao, J.; Jiang, J. Air pollutant emissions from coal-fired power plants in China over the past two decades. Sci. Total Environ. 2020, 741, 140326. [Google Scholar] [CrossRef]
- Wu, Y. Comparison about Particles Samplers for Coal-Fired Pollution Sources and Its Application in Power Plants. Master’s Thesis, Chinese Research Academy of Environmental Sciences, Beijing, China, 30 June 2017. [Google Scholar]
- Xu, Y. Improvement of Monitoring Measures on Atmospheric Particulates from Exhaust Gas by Stationary Sources in China. Environ. Monit. China 2017, 33, 54–60. [Google Scholar] [CrossRef]
- Liang, Y. Monitoring Technology Situation and Thinking on Low Concentration Particulate Matters Emitted from Stationary Sources. Environ. Monit. China 2013, 29, 161–164. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, C.; Wu, X.; Li, M. Analyzing on Monitoring Technology Situation of Fine Particulate Matters Emitted from Stationary Source. Environ. Sci. Technol. 2016, 29, 69–74. [Google Scholar]
- Yang, K.; Zhou, G.; Wang, Q.; Zhong, Q.; Teng, E. The Current Technical Situation and Development Tendency of Continuous Emission Monitoring System. Environ. Monit. China 2010, 26, 18–26. [Google Scholar] [CrossRef]
- Bousiotis, D.; Alconcel, L.S.; Beddows, D.C.; Harrison, R.M.; Pope, F.D. Monitoring and apportioning sources of indoor air quality using low-cost particulate matter sensors. Environ. Int. 2023, 174, 107907. [Google Scholar] [CrossRef]
- Sousan, S.; Regmi, S.; Park, Y.M. Laboratory Evaluation of Low-Cost Optical Particle Counters for Environmental and Occupational Exposures. Sensors 2021, 21, 4146. [Google Scholar] [CrossRef]
- Sohn, I.-B.; Choi, H.-K.; Jung, Y.-J.; Lee, C.-J.; Oh, M.-K.; Ahsan, M.S. Measurement of Fine/Ultrafine Dust Using Lenticular Fiber-Based Particulate Measurement Devices. IEEE Sens. J. 2023, 23, 8400–8409. [Google Scholar] [CrossRef]
- Xu, Y.; Losno, R.; Monna, F.; Rajot, J.L. Compositional data analysis (CoDA) as a tool to evaluate a new low-cost settling-based PM10 sampling head in a desert dust source region. Atmos. Meas. Tech. 2021, 14, 7657–7680. [Google Scholar] [CrossRef]
- Wu, J.; Xu, K.; Chi, Y.; Zhou, G.; Wang, W. Evaluation of the linear relationship validity between two beta attenuation monitors with different configurations. China Environ. Sci. 2021, 42, 5617–5625. [Google Scholar] [CrossRef]
- Tang, L.; Xue, X.; Qu, J.; Mi, Z.; Bo, X.; Chang, X.; Wang, S.; Li, S.; Cui, W.; Dong, G. Air pollution emissions from Chinese power plants based on the continuous emission monitoring systems network. Sci. Data 2020, 7, 325. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, H.; Sun, Q.; Yu, F.; Wang, Y.; Wan, W.; Wang, C.; Gui, H.; Liu, J.; Lü, L. Simulation of Miniature PDMA for Ultrafine-Particle Measurement. Atmosphere 2019, 10, 116. [Google Scholar] [CrossRef]
- Le, T.-C.; Lin, C.-H.; Gong, W.-C.; Ždímal, V.; Pui, D.Y.-H.; Tsai, C.-J. Novel inertial impactor for nanoparticle classification without particle loading effect. J. Aerosol Sci. 2022, 159, 105879. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, S.; Zhu, M.; Deng, T.; Chen, A.; Zeng, J. Three-wavelength optical sensor for measuring distributed mass concentrations of aerosols from stationary sources. Opt Express 2021, 29, 6407–6423. [Google Scholar] [CrossRef]
- Armbruster, L.; Breuer, H.; Gebhart, J.; Neulinger, G. Photometric Determination of Respirable Dust Concentration without Elutriation of Coarse Particles. Part. Part. Syst. Charact. 2010, 1, 96–101. [Google Scholar] [CrossRef]
- Gmiterko, A.; Slosarcik, S.; Dovic, M. Algorithm of Nonrespirable Dust Fraction Suppression Using an Optical Transducer of Dust Mass Concentration. IEEE Trans. Instrum. Meas. 1998, 47, 1228–1233. [Google Scholar] [CrossRef]
- Zhao, J. Design of Dust Generation and Concentration Measurement Device Based on Light Scattering Method. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 6 June 2017. [Google Scholar]
- Baron, P.; Willeke, K. Aerosol Measurement: Principles, Techniques, and Applications, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2005. [Google Scholar]
- Wang, S.; Xiao, X.; Deng, T.; Chen, A.; Zhu, M. A Sauter mean diameter sensor for fire smoke detection. Sens. Actuators B Chem. 2019, 281, 920–932. [Google Scholar] [CrossRef]
- Sauter, J. Die Grössenbestimmung der in Gemischnebeln von Verbrennungskraftmaschinen vorhandenen Brennstoffteilchen. VDI-Forschungsheft Nr. 1926, 279. [Google Scholar]
- Li, K.; Liu, G.; Yuan, H.; Chen, Y.; Dai, Y.; Meng, X.; Kang, Y.; Huang, L. Dual-Wavelength Smoke Detector Measuring Both Light Scattering and Extinction to Reduce False Alarms. Fire 2023, 6, 140. [Google Scholar] [CrossRef]
- Deng, T.; Wang, S.; Zhu, M. Dual-wavelength optical sensor for measuring the surface area concentration and the volume concentration of aerosols. Sens. Actuators B Chem. 2016, 236, 334–342. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, P.; Jiang, X.; Wu, Q.; Ma, P. Preliminary comparison of sampling methods for particles of electrostatic precipitator outlet in coal-fired power plant. Environ. Sci. Technol. 2018, 31, 69–73. [Google Scholar]
- Jiang, S. Research on Extractive Continuous Sampling Equipment in Continuous Emission Monitoring System. Master’s Thesis, Huazhong University of Science & Technology, Wuhan, China, 2 June 2020. [Google Scholar]
- Wang, H.; Zhou, J.; Li, X.; Ling, Q.; Wei, H.; Gao, L.; He, Y.; Zhu, M.; Xiao, X.; Liu, Y.; et al. Review on recent progress in on-line monitoring technology for atmospheric pollution source emissions in China. J. Environ. Sci. 2023, 123, 367–386. [Google Scholar] [CrossRef] [PubMed]
Parameters | Range |
---|---|
Mean diameter (nm) | 100:100:5000 |
Standard deviation | 1.1:0.1:1.5 |
Wavelength of incident light (nm) | 450:940:1550 |
Working Load | Items | (mg/m3) | (mg/m3) | (mg/m3) | |||
---|---|---|---|---|---|---|---|
Samples | P1 | P2 | P3 | / | / | / | |
180 MW | PM10 | 1.70 | / | / | 1.70 | 1.68 | 1.20% |
PM2.5 | 1.49 | / | / | 1.49 | 1.56 | 4.37% | |
PM1 | 0.64 | / | / | 0.64 | 0.68 | 6.21% | |
200 MW | PM10 | 1.69 | 1.83 | 1.47 | 1.66 | 1.72 | 3.57% |
PM2.5 | 1.54 | 1.67 | 1.32 | 1.51 | 1.61 | 6.84% | |
PM1 | 0.77 | 0.95 | 0.59 | 0.77 | 0.80 | 3.51% | |
250 MW | PM10 | 2.38 | 2.25 | / | 2.32 | 2.27 | 1.98% |
PM2.5 | 2.06 | 1.83 | / | 1.95 | 2.09 | 7.10% | |
PM1 | 1.27 | 0.99 | / | 1.13 | 1.09 | 3.11% |
Instrument | Principle | Distribution Measurement | Mass Concentration Range | Mass Concentration Accuracy |
---|---|---|---|---|
ESA BETA 5M 1 | β-Ray | Not Available | 0–10 mg/m3 | 0.3 μg/m3 |
LANDUN LGH-105 2 | TEOM | Not Available | 0.1–10 mg/m3 | 0.1 μg/m3 |
SICK FWE200 3 | Attenuation | Not Available | 0–5 mg/m3; 0–200 mg/m3 | 0.1 mg/m3; 4 mg/m3 |
Our Prototype | Light Scattering | Available | 0–10 mg/m3; 0–250 mg/m3 | 0.1 mg/m3; 2.5 mg/m3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Zhu, M.; Wang, Q.; Yuan, X.; Lin, M. A Three-Wavelength Optical Sensor for Measuring the Multi-Particle-Size Channel Mass Concentration of Thermal Power Plant Emissions. Sensors 2024, 24, 1424. https://doi.org/10.3390/s24051424
Xiao X, Zhu M, Wang Q, Yuan X, Lin M. A Three-Wavelength Optical Sensor for Measuring the Multi-Particle-Size Channel Mass Concentration of Thermal Power Plant Emissions. Sensors. 2024; 24(5):1424. https://doi.org/10.3390/s24051424
Chicago/Turabian StyleXiao, Xiao, Ming Zhu, Qiuyu Wang, Xiaodong Yuan, and Mengxue Lin. 2024. "A Three-Wavelength Optical Sensor for Measuring the Multi-Particle-Size Channel Mass Concentration of Thermal Power Plant Emissions" Sensors 24, no. 5: 1424. https://doi.org/10.3390/s24051424
APA StyleXiao, X., Zhu, M., Wang, Q., Yuan, X., & Lin, M. (2024). A Three-Wavelength Optical Sensor for Measuring the Multi-Particle-Size Channel Mass Concentration of Thermal Power Plant Emissions. Sensors, 24(5), 1424. https://doi.org/10.3390/s24051424