Exploring the Beam Squint Effects on Reflectarray Performance: A Comprehensive Analysis of the Specular and Scattered Reflection of the Unit Cell
Abstract
:1. Introduction
2. Beam Squint in Reflectarrays
2.1. Design and Beam Scanning
2.2. Beam Squint Investigation
2.2.1. Theoretical Model of the Unit Cell Reflection Characteristics
2.2.2. Beam Squint in Different Cases of Reflectarray
3. Recommendations for Reducing the Beam Squint
3.1. Unit Cell Design
3.1.1. Unit Cell Periodicity
3.1.2. Unit Cell Phase Range
3.2. Design and Position of the Feeding Structure
3.2.1. Cassegrain Reflectarray
3.2.2. Dielectric-Loaded Horn Antenna
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, C.; Zhang, Y.; Yang, Q. A Broadband Reflectarray Antenna Using Triple Gapped Rings with Attached Phase-Delay Lines. IEEE Trans. Antennas Propagat. 2017, 65, 2713–2717. [Google Scholar] [CrossRef]
- Xue, F.; Wang, H.; Yi, M.; Liu, G.; Dong, X. Design of a Broadband Single-Layer Linearly Polarized Reflectarray Using Four-Arm Spiral Elements. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 696–699. [Google Scholar] [CrossRef]
- Vosoogh, A.; Keyghobad, K.; Khaleghi, A.; Mansouri, S. A highefficiency Ku-band reflectarray antenna using single-layer multiresonance elements. IEEE Antennas Wirel. Propag. Lett. 2014, 14, 891–894. [Google Scholar] [CrossRef]
- Qin, P.Y.; Guo, Y.J.; Weily, A.R. Broadband reflectarray antenna using subwavelength elements based on double square meander-line rings. IEEE Trans. Antennas Propagat. 2015, 64, 378–383. [Google Scholar] [CrossRef]
- Guo, L.; Tan, P.K.; Chio, T.H. Bandwidth improvement of reflectarrays using single-layered double concentric circular ring elements on a subwavelength grid. Microw. Opt. Technol. Lett. 2014, 56, 418–421. [Google Scholar] [CrossRef]
- Guo, L.; Yu, H.; Che, W.; Yang, W. Broadband Reflectarray Antenna Using Single-Layer Rectangular Patches Embedded with Inverted L-Shaped Slots. IEEE Trans. Antennas Propagat. 2019, 67, 3132–3139. [Google Scholar] [CrossRef]
- Min, M.; Guo, L. Design of a wideband single-layer reflectarray antenna using slotted rectangular patch with concave arms. IEEE Access 2019, 7, 176197–176203. [Google Scholar] [CrossRef]
- Wu, G.; Qu, S.; Yang, S. Wide-angle beam-scanning reflectarray with mechanical steering. IEEE Trans. Antennas Propag. 2017, 66, 172–181. [Google Scholar] [CrossRef]
- Wu, G.B.; Qu, S.W.; Chan, C.H. Wide-angle beam scanning reflectarray antenna design using phase matching method. In Proceedings of the 2017 10th Global Symposium on Millimeter-Waves, Hong Kong, China, 24–26 May 2017; pp. 132–133. [Google Scholar]
- Nayeri, P.; Yang, F.; Elsherbeni, A.Z. Bifocal design and aperture phase optimizations of reflectarray antennas for wide-angle beam scanning performance. IEEE Trans. Antennas Propag. 2013, 61, 4588–4597. [Google Scholar] [CrossRef]
- Devireddy, B.; Yu, A.; Yang, F.; Elsherbeni, A.Z. Gain and bandwidth limitations of reflectarrays. ACES J.-Appl. Comput. Electromagn. Soc. 2011, 26, 170. [Google Scholar]
- Zhang, J.; Zhang, G.; Dai, L. Frequency-invariant sensor selection for MVDR beamforming in wireless acoustic sensor networks. IEEE Trans. Wirel. Commun. 2022, 21, 10648–10661. [Google Scholar] [CrossRef]
- Targonski, S.D.; Pozar, D.M. Minimization of beam squint in microstrip reflectarrays using an offset feed. IEEE Antennas Propag. Soc. Int. Symp. 1996, 2, 1326–1329. [Google Scholar]
- Pozar, D.M.; Targonski, S.D.; Syrigos, H.D. Design of millimeter wave microstrip reflectarrays. IEEE Trans. Antennas Propagat. 1997, 45, 287–296. [Google Scholar] [CrossRef]
- Almajali, E.; McNamara, D.A.; Shaker, J.; Chaharmir, M.R. On Beam Squint in Offset-Fed Reflectarrays. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 937–940. [Google Scholar] [CrossRef]
- Tcvetkova, S.N.; Asadchy, V.S.; Tretyakov, S.A. Scanning characteristics of metamirror antennas with subwavelength focal distance. IEEE Trans. Antennas Propagat. 2016, 64, 3656–3660. [Google Scholar] [CrossRef]
- Nayeri, P.; Yang, F.; Elsherbeni, A.Z. Broadband Reflectarray Antennas Using Double-Layer Subwavelength Patch Elements. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 1139–1142. [Google Scholar] [CrossRef]
- Nayeri, P.; Yang, F.; Elsherbeni, A.Z. Bandwidth improvement of reflectarray antennas using closely spaced elements. Prog. Electromagn. Res. 2011, 18, 19–29. [Google Scholar] [CrossRef]
- El Hani, R.; Laurin, J.J. Phase analysis for off-specular reflectarray antennas. In Proceedings of the IEEE International Symposium on Antennas and Propagation (APSURSI), Washington, DC, USA, 3–8 July 2011; pp. 380–383. [Google Scholar]
- McNamara, D.A.; Shaker, J.; Chaharmir, M.R. Beam squint suppression in offset-fed reflectarrays. IEEE Antenna Wirel. Propag. Lett. 2013, 12, 587–590. [Google Scholar]
- Kiris, O.; Topalli, K.; Unlu, M. A reflectarray antenna using hexagonal lattic with ehnanced beam steering capbility. IEEE Access 2019, 7, 45526–45532. [Google Scholar] [CrossRef]
- Bodur, H.; Ünaldı, S.; Çimen, S.; Çakır, G. Broadband single-layer reflectarray antenna for X-band applications. IET Microwaves Antennas Propag. 2017, 12, 1609–1612. [Google Scholar] [CrossRef]
- Shabbir, T.; Saleem, R.; Rehman, S.U.; Shafique, M.F. Single layer reflectarray antenna with pie-shaped elements for X-band applications. Appl. Comput. Electromagn. Soc. J. (ACES) 2018, 33, 1230–1235. [Google Scholar]
- Huang, J.; Encinar, J.A. Reflectarray Antennas; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Ismail, M.Y.; Inam, M.; Zain, A.F.M.; Misran, N. Mathematical model for progressive phase distribution of ku-band reflectarray antennas. Int. J. Commun. 2013, 7, 1055–1059. [Google Scholar]
- Foroozesh, A.; Shafai, L. On the scattering analysis methods of and reflection characteristics for an AMC/AEC surface. IEEE Antennas Propag. Mag. 2010, 52, 71–90. [Google Scholar] [CrossRef]
Type of RA | °/Freq. (GHz) | 10.7 | 11.2 | 11.725 | 12.2 | 12.75 | |
---|---|---|---|---|---|---|---|
Squint | Center-Fed | 25 | 2.6 | 1.3 | 0 | 1.5 | 3 |
30 | 2.8 | 1.5 | 0.1 | 1.2 | 2.9 | ||
35 | 3.1 | 1.7 | 0 | 1.6 | 3.4 | ||
Off-Center-Fed | 25 | 0.4 | 0.4 | 0.1 | 0.1 | 0 | |
30 | 0.5 | 0.2 | 0 | 0 | 0.1 | ||
35 | 0.4 | 0.2 | 0 | 0.2 | 0.54 |
Frequency (GHz) | 10.7 | 11.725 | 12.75 |
---|---|---|---|
° | 0 | 0 | 0 |
° (LHA) | 34.1 | 29.2 | 25.29 |
° (RHA) | 31.1 | 29.5 | 28.18 |
Case | Gain (dB) | 3 dB GBW (%) | (%) | Symmetry | ||
---|---|---|---|---|---|---|
Case-I | 33 | 31.2 | 62 | x-, y-axis | 0 | 0 |
Case-II | 31 | 11.9 | 50 | x-axis | High | High |
Case-III | 31.89 | 31.2 | 42 | x-axis | Low | High |
Ref. | Technique | Merits/Demerits |
---|---|---|
[13] | Beam aligned with specular reflection | Not desired everywhere |
[14] | Beam aligned with specular reflection | Not desired everywhere |
[16] | High F/D ratio | Bulky size |
[17] | Reduced UC size | Multilayered structure used to cover 360° phase |
[18] | Reduced UC size | Multilayered structure used to cover 360° phase |
[20] | Two horns at reciprocal angles | Complex and heavy |
[Prop.] | Virtually high F/D ratio | Reduced profile, applicable to any RA, and simple |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elahi, M.; Altaf, A.; Koziel, S.; Pietrenko-Dabrowska, A. Exploring the Beam Squint Effects on Reflectarray Performance: A Comprehensive Analysis of the Specular and Scattered Reflection of the Unit Cell. Sensors 2024, 24, 1438. https://doi.org/10.3390/s24051438
Elahi M, Altaf A, Koziel S, Pietrenko-Dabrowska A. Exploring the Beam Squint Effects on Reflectarray Performance: A Comprehensive Analysis of the Specular and Scattered Reflection of the Unit Cell. Sensors. 2024; 24(5):1438. https://doi.org/10.3390/s24051438
Chicago/Turabian StyleElahi, Manzoor, Amir Altaf, Slawomir Koziel, and Anna Pietrenko-Dabrowska. 2024. "Exploring the Beam Squint Effects on Reflectarray Performance: A Comprehensive Analysis of the Specular and Scattered Reflection of the Unit Cell" Sensors 24, no. 5: 1438. https://doi.org/10.3390/s24051438
APA StyleElahi, M., Altaf, A., Koziel, S., & Pietrenko-Dabrowska, A. (2024). Exploring the Beam Squint Effects on Reflectarray Performance: A Comprehensive Analysis of the Specular and Scattered Reflection of the Unit Cell. Sensors, 24(5), 1438. https://doi.org/10.3390/s24051438